Differential Subordinations for Certain Meromorphically Multivalent Functions Defined by Dziok-Srivastava Operator

نویسندگان

  • Ying Yang
  • Yu-Qin Tao
  • Jin-Lin Liu
  • Malisa R. Zizovic
چکیده

and Applied Analysis 3 Corresponding to a function hp α1, . . . , αq; β1, . . . , βs; z defined by hp ( α1, . . . , αq; β1, . . . , βs; z ) z−pqFs ( α1, . . . , αq; β1, . . . , βs; z ) , 1.11 we now consider a linear operator Hp ( α1, . . . , αq; β1, . . . , βs ) : Σ ( p ) −→ Σp, 1.12 defined by means of the Hadamard product or convolution as follows: Hp ( α1, . . . , αq; β1, . . . , βs ) f z : hp ( α1, . . . , αq; β1, . . . , βs; z ) ∗ f z . 1.13 For convenience, we write Hp,q,s α1 : Hp ( α1, . . . , αq; β1, . . . , βs ) . 1.14 Thus, after some calculations, we have z ( Hp,q,s α1 f z )′ α1Hp,q,s α1 1 f z − ( α1 p ) Hp,q,s α1 f z . 1.15 The operator Hp,q,s α1 is popularly known as the generalized Dziok-Srivastava operator. Many interesting subclasses of multivalent functions, associated with the operator Hp,q,s α1 and its various special cases, were investigated recently by e.g. Dziok and Srivastava 2–4 , Liu 5 , Liu and Srivastava 6, 7 , Patel et al. 8 , Wang et al. 9 , and others. Let P be the class of functions h z with h 0 1, which are analytic and convex univalent in U. Definition 1.1. A function f z ∈ Σ p is said to be in the class Tp,q,s α1, λ;h if it satisfies the subordination condition λ − 1 p z 1 ( Hp,q,s α1 f z )′ λ p ( p 1 )z 2 ( Hp,q,s α1 f z )′′ ≺ h z , 1.16 where λ is a complex number and h z ∈ P . The main object of this paper is to present a systematic investigation of the class Tp,q,s α1, λ;h defined above by means of the generalized Dziok-Srivastava operator Hp,q,s α1 . For our purpose, we shall need the following lemmas to derive our main results for the class Tp,q,s α1, λ;h . Lemma 1.2 see 10 . Let g z be analytic in U and h z be analytic and convex univalent in U with h 0 g 0 . If g z 1 μ zg ′ z ≺ h z , 1.17 4 Abstract and Applied Analysis where Re μ > 0, then g z ≺ h̃ z μz−μ ∫z v tμ−1h t dt ≺ h z 1.18 and h̃ z is the best dominant of 1.17 . Lemma 1.3 see 1 . Let α < 1, f z ∈ S∗ α and g z ∈ R α . Then, for any analytic function F z in U, g ∗ fF g ∗ f U ⊂ co F U , 1.19 where co F U denotes the closed convex hull of F U . 2. Properties of the Class Tp,q,s α1, λ;h Theorem 2.1. Let λ1 < λ2 ≤ 0. Then Tp,q,s α1, λ1;h ⊂ Tp,q,s α1, λ2;h . Proof. Let λ1 < λ2 ≤ 0 and suppose that g z − p 1Hp,q,s α1 f z )′ p 2.1 for f z ∈ Tp,q,s α1, λ1;h . Then the function g z is analytic inUwith g 0 1. Differentiating both sides of 2.1 with respect to z and using 1.16 , we have λ1 − 1 p z 1 ( Hp,q,s α1 f z )′ λ1 p ( p 1 )z 2 ( Hp,q,s α1 f z )′′ g z − λ1 p 1 zg ′ z ≺ h z . 2.2 Hence an application of Lemma 1.2 yields g z ≺ h z . 2.3 Noting that 0 < λ2/λ1 < 1 and that h z is convex univalent in U, it follows from 2.1 to 2.3 that λ2 − 1 p z 1 ( Hp,q,s α1 f z )′ λ2 p ( p 1 )z 2 ( Hp,q,s α1 f z )′′ λ2 λ1 ( λ1 − 1 p z 1 ( Hp,q,s α1 f z )′ λ1 p ( p 1 )z 2 ( Hp,q,s α1 f z )′′ ) ( 1 − λ2 λ1 ) g z ≺ h z . 2.4 Thus f z ∈ Tp, q, s α1, λ2;h and the proof of Theorem 2.1 is completed. Abstract and Applied Analysis 5 Theorem 2.2. Let 0 < b1 < b2. Then Tp,q,s b2, λ;h ⊂ Tp,q,s b1, λ;h . Proof. Define a function g z byand Applied Analysis 5 Theorem 2.2. Let 0 < b1 < b2. Then Tp,q,s b2, λ;h ⊂ Tp,q,s b1, λ;h . Proof. Define a function g z by g z z ∞ ∑ n 1 b1 n b2 n z 1 z ∈ U; 0 < b1 < b2 . 2.5 Then z hp b1, α2, . . . , αs, 1; b2, α2, . . . , αs; z g z ∈ A, 2.6 where hp b1, α2, . . . , αs, 1; b2, α2, . . . , αs; z 2.7 is defined as in 1.11 , and z 1 − z b2 ∗ g z z 1 − z b1 . 2.8 By 2.8 , we see that z 1 − z b2 ∗ g z ∈ S∗ ( 1 − b1 2 ) ⊂ S∗ ( 1 − b2 2 ) 0 < b1 < b2 , 2.9

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function

Keywords: Meromorphic functions Multivalent functions Dziok–Srivastava linear operator Hadamard product (or convolution) Subordination between analytic functions Generalized hypergeometric function Symmetric points Conjugate points Symmetric conjugate points a b s t r a c t In the present paper, we introduce and investigate each of the following new subclasses: of meromorphically p-valent funct...

متن کامل

Differential Subordinations and Superordinations for Analytic Functions Defined by the Dziok-srivastava Linear Operator

In the present investigation, we obtain some subordination and superordination results involving Dziok-Srivastava linear operator H l m[α1] for certain normalized analytic functions in the open unit disk. Our results extend corresponding previously known results.

متن کامل

On a class of analytic multivalent functions

We use a property of the Bernardi operator in the theory of the Briot–Bouquet differential subordinations to prove several theorems for the classes VpkðH;A;BÞ of multivalent analytic functions defined by using the Dziok–Srivastava operator H. Some of these results we obtain applying the convolution property due to Rusheweyh. We take advantage of the Miller–Mocanu lemma to improve the earlier re...

متن کامل

On meromorphically multivalent functions defined by multiplier transformation

The purpose of this paper is to derive various useful subordination properties and characteristics for certain subclass of multivalent meromorphic functions, which are defined here by the multiplier transformation. Also, we obtained inclusion relationship for this subclass.

متن کامل

On some applications of the Dziok-Srivastava operator

Carlson and Shaffer [B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) 737–745] have introduced a linear operator associated with the Gaussian hypergeometric function which has been generalized by Dziok and Srivastava [J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl....

متن کامل

Subordinations for analytic functions defined by the Dziok-Srivastava linear operator

In the present investigation, we obtain certain sufficient conditions for a normalized analytic function f(z) defined by the Dziok–Srivastava linear operator Hm1⁄2a1 to satisfy the certain subordination. Our results extend corresponding previously known results on starlikeness, convexity, and close to convexity. 2006 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014