Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study
نویسنده
چکیده
Infrared spectra of hydrogenated diamond nanocrystals of one nanometer length are calculated by ab initio methods. Positions of atoms are optimized via density functional theory at the level of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) using 3-21G basis states. The frequencies in the vibrational spectrum are analyzed against reduced masses, force constants and intensities of vibration. The spectrum can be divided into two regions depending on the properties of the vibrations or the gap separating them. In the first region, results show good matching to several experimentally obtained lines. The 500 cm(-1) broad-peak acoustical branch region is characterized by pure C-C vibrations. The optical branch is centered at 1185 cm(-1). Calculations show that several C-C vibrations are mixed with some C-H vibrations in the first region. In the second region the matching also extends to C-H vibration frequencies that include different modes such as symmetric, asymmetric, wagging, scissor, rocking and twisting modes. In order to complete the picture of the size dependence of the vibrational spectra, we analyzed the spectra of ethane and adamantane. The present analysis shows that acoustical and optical branches in diamond nanocrystals approach each other and collapse at 963 cm(-1) in ethane. Variation of the highest reduced-mass-mode C-C vibrations from 1332 cm(-1) of bulk diamond to 963 cm(-1) for ethane (red shift) is shown. The analysis also shows the variation of the radial breathing mode from 0 cm(-1) of bulk diamond to 963 cm(-1) for ethane (blue shift). These variations compare well with experiment. Experimentally, the above-mentioned modes appear shifted from their exact positions due to overlap with neighboring modes.
منابع مشابه
NMR and vibrational spectra of 2-methoxycarbonyl-7-methyl-1,3-thiazino[3,2- b][1,2,4]triazine-4,8-dione: a joint of experimental and DFT
The IR and NMR spectra were coupled with quantum chemical calculations in DFT approach usingthe hybrid B3LYP exchange-correlation functional to confirm the structure of 2-methoxycarbonyl-7-methyl-1,3-thiazino[3,2-b][1,2,4]triazine-4,8-dione 2d.
متن کاملColloidal synthesis of germanium nanocrystals
In this study, colloidal germanium nanocrystals were synthesized by a simple and novel method, and their optical properties were also studied. Polyvinyl alcohol (PVA) as a surface modifier was used to control the optical properties of colloidal Ge nanocrystals. Fourier transform infrared spectroscopy (FTIR) analysis was performed to identify the various functional groups present in the sample. ...
متن کاملGround states of group-IV nanostructures: Magic structures of diamond and silicon nanocrystals
We have developed an effective model to investigate the energetic stability of hydrogenated group-IV nanostructures, followed by validations from density-functional theory calculations. The Hamiltonian of XmHn (X = C, Si, Ge, and Sn) is expressed analytically by the atom numbers (m, n) and the magic numbers of diamond nanocrystals and silicon nanocrystals are determined. It is found that surfac...
متن کاملNew Method for Synthesis of Zinc Metaborate Zn4B6O13 Crystals via Sol-Gel Process and Investigation of DFT Calculations
In this work facile sol-gel (pechni) method has been successfully established to synthesize Zn4B6O13 nanocrystals which have cubic crystals with lattice parameter: a =7.48 A. The structure and morphology of the obtained material were studied by X-ray diffraction (XRD), Infrared spectra (IR), scanning electron microscopy (SEM) and photoluminescence analysis. The experimental results show a band ...
متن کاملNew Method for Synthesis of Zinc Metaborate Zn4B6O13 Crystals via Sol-Gel Process and Investigation of DFT Calculations
In this work facile sol-gel (pechni) method has been successfully established to synthesize Zn4B6O13 nanocrystals which have cubic crystals with lattice parameter: a =7.48 A. The structure and morphology of the obtained material were studied by X-ray diffraction (XRD), Infrared spectra (IR), scanning electron microscopy (SEM) and photoluminescence analysis. The experimental results show a band ...
متن کامل