The cell non-autonomous function of ATG-18 is essential for neuroendocrine regulation of Caenorhabditis elegans lifespan
نویسندگان
چکیده
Dietary restriction (DR) and reduced insulin growth factor (IGF) signaling extend lifespan in Caenorhabditis elegans and other eukaryotic organisms. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has emerged as a central pathway regulated by various longevity signals including DR and IGF signaling in promoting longevity in a variety of eukaryotic organisms. However, the mechanism remains unclear. Here we show that the autophagy protein ATG-18 acts cell non-autonomously in neuronal and intestinal tissues to maintain C. elegans wildtype lifespan and to respond to DR and IGF-mediated longevity signaling. Moreover, ATG-18 activity in chemosensory neurons that are involved in food detection sufficiently mediates the effect of these longevity pathways. Additionally, ATG-18-mediated cell non-autonomous signaling depends on the release of neurotransmitters and neuropeptides. Interestingly, our data suggest that neuronal and intestinal ATG-18 acts in parallel and converges on unidentified neurons that secrete neuropeptides to regulate C. elegans lifespan through the transcription factor DAF-16/FOXO in response to reduced IGF signaling.
منابع مشابه
Determination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملWIPI-Mediated Autophagy and Longevity
Autophagy is a lysosomal degradation process for cytoplasmic components, including organelles, membranes, and proteins, and critically secures eukaryotic cellular homeostasis and survival. Moreover, autophagy-related (ATG) genes are considered essential for longevity control in model organisms. Central to the regulatory relationship between autophagy and longevity is the control of insulin/insu...
متن کاملA Non-Cell-Autonomous Role of BEC-1/BECN1/Beclin1 in Coordinating Cell-Cycle Progression and Stem Cell Proliferation during Germline Development
The decision of stem cells to proliferate and differentiate is finely controlled. The Caenorhabditis elegans germline provides a tractable system for studying the mechanisms that control stem cell proliferation and homeostasis [1-4]. Autophagy is a conserved cellular recycling process crucial for cellular homeostasis in many different contexts [5], but its function in germline stem cell prolife...
متن کاملAtypical antidepressants extend lifespan of Caenorhabditis elegans by activation of a non‐cell‐autonomous stress response
Oxidative stress has long been associated with aging and has recently been linked to psychiatric disorders, including psychosis and depression. We identified multiple antipsychotics and antidepressants that extend Caenorhabditis elegans lifespan and protect the animal from oxidative stress. Here, we report that atypical antidepressants activate a neuronal mechanism that regulates the response t...
متن کاملSynergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans
Oxygen (O2 ) homeostasis is important for all aerobic animals. However, the manner by which O2 sensing and homeostasis contribute to lifespan regulation is poorly understood. Here, we use the nematode Caenorhabditis elegans to address this question. We demonstrate that a loss-of-function mutation in the neuropeptide receptor gene npr-1 and a deletion mutation in the atypical soluble guanylate c...
متن کامل