Instrumental Variable Quantile Regression * †

نویسنده

  • Christian Hansen
چکیده

Quantile regression is an increasingly important tool that estimates the conditional quantiles of a response Y given a vector of regressors D. It usefully generalizes Laplace’s median regression and can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. For the linear quantile model defined by Y = D′γ(U) where D′γ(U) is strictly increasing in U and U is a standard uniform variable independent of D, quantile regression allows estimation of quantile specific covariate effects γ(τ) for τ ∈ (0, 1). In this paper, we propose an instrumental variable quantile regression estimator that appropriately modifies the conventional quantile regression and recovers quantile-specific covariate effects in an instrumental variables model defined by Y = D′α(U) where D′α(U) is strictly increasing in U and U is a uniform variable that may depend onD but is independent of a set of instrumental variables Z. The proposed estimator and inferential procedures are computationally convenient in typical applications and can be carried out using software available for conventional quantile regression. In addition, the proposed estimation procedure gives rise to a convenient inferential procedure that is naturally robust to weak identification. The use of the proposed estimator and testing procedure is illustrated through two empirical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference on the Instrumental Quantile Regression Process for Structural and Treatment Effect Models

We introduce a class of instrumental quantile regression methods for heterogeneous treatment effect models and simultaneous equations models with nonadditive errors and offer computable methods for estimation and inference. These methods can be used to evaluate the impact of endogenous variables or treatments on the entire distribution of outcomes. We describe an estimator of the instrumental v...

متن کامل

Instrumental quantile regression inference for structural and treatment effect models

We introduce a class of instrumental quantile regression methods for heterogeneous treatment effect models and simultaneous equations models with nonadditive errors and offer computable methods for estimation and inference. These methods can be used to evaluate the impact of endogenous variables or treatments on the entire distribution of outcomes. We describe an estimator of the instrumental v...

متن کامل

Instrumental Variable Quantile Regression: A Robust Inference Approach

In this paper, we develop robust inference procedures for an instrumental variables model defined by Y = D′α(U) where D′α(U) is strictly increasing in U and U is a uniform variable that may depend onD but is independent of a set of instrumental variables Z. The proposed inferential procedures are computationally convenient in typical applications and can be carried out using software available ...

متن کامل

A branch-and-bound algorithm for instrumental variable quantile regression

This paper studies a statistical problem called instrumental variable quantile regression (IVQR). We model IVQR as a convex quadratic program with complementarity constraints and—although this type of program is generally NP-hard—we develop a branch-and-bound algorithm to solve it globally. We also derive bounds on key variables in the problem, which are valid asymptotically for increasing samp...

متن کامل

Instrumental Variable Quantile Estimation of Spatial Autoregressive Models∗

We propose a spatial quantile autoregression (SQAR) model, which allows cross-sectional dependence among the responses, unknown heteroscedasticity in the disturbances, and heterogeneous impacts of covariates on different points (quantiles) of a response distribution. The instrumental variable quantile regression (IVQR) method of Chernozhukov and Hansen (2006) is generalized to allow the data to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005