Ethanol Extract of Bupleurum falcatum Improves Functional Recovery by Inhibiting Matrix Metalloproteinases-2 and -9 Activation and Inflammation after Spinal Cord Injury
نویسندگان
چکیده
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix and other extracellular proteins. Upregulation of MMPs activity is known to be required for the inflammatory cell infiltration after spinal cord injury (SCI) and most likely contributes to early blood spinal barrier disruption and inflammation, thereby leading to the impairment of functional recovery. Here, we examined the effect of ethanol extract of Bupleurum falcatum (BF) on functional recovery by inhibiting MMP-2 and -9 activation and inflammation after SCI. Rats received a moderate, weight-drop contusion injury to spinal cord were administered orally with BF at a dose of 100 mg/kg for 14 d and functional recovery was measured by Basso-Beattie-Bresnahan locomotor open field behavioral rating test, inclined plane test and foot print analysis. To examine the neuroprotective effect of BF, TUNEL staining and counting were also performed. In addition, the expression and/or activation of MMP-2, MMP-9 and inflammatory mediators such as TNF-α, IL-1β, COX-2, and iNOS were examined by RT-PCR and gelatin zymography using spinal cord tissue from 1 d after injury. Our data showed that BF significantly inhibited the expression and activation of both MMP-2 and MMP-9 after SCI. The mRNA expressions of TNF-α, IL-1β, COX-2, and iNOS were also significantly attenuated by BF. Furthermore, BF reduced apoptotic cell death at 1 d after injury, thereby significantly reduced lesion volume and improved functional recovery. Taken together, these results suggest that BF can be used as a potential therapeutic agent for treating acute spinal injury.
منابع مشابه
Downregulation of Matrix Metalloproteinases 2 and 9 is Involved in the Protective Effect of Trehalose on Spinal Cord Injury
Upregulation of matrix metalloproteinases (MMPs), in particular MMP-2 and MMP-9 contributes to secondary pathogenesis of spinal cord injury (SCI) via promoting inflammation. Recently, we reported that trehalose suppresses inflammatory responses following SCI. Therefore, we investigated the effect of trehalose on MMP-2 and MMP-9 expression in SCI. A weight-drop contusion SCI was induced in male ...
متن کاملInfluence of Sexuality in Functional Recovery after Spinal Cord Injury in rats
Background: Spinal cord injury (SCI) is a major clinical condition and research is commonly done to find suitable treatment options. However, there are some degrees of spontaneous recovery after SCI and gender is said to be a contributing factor in recovery, but this is controversial. This study was done to compare the effects of sexual dimorphism on spontaneous recovery after spinal cord inj...
متن کاملEffect of chondroitinase ABC on inflammatory and oxidative response following spinal cord injury
Objective(s): Chondroitinase ABC (cABC) treatment improves functional recovery following spinal cord injury (SCI) through degrading inhibitory molecules to axon growth. However, cABC involvement in other pathological processes contributing to SCI remains to be investigated. Here, we studied the effect of cABC I on oxidative stress and inflammation developed in a rat model of SCI.Materials and M...
متن کاملMatrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events.
Inflammation in general and proteinases generated as a result are likely mediators of early secondary pathogenesis after spinal cord injury. We report that matrix metalloproteinase-9 (MMP-9) plays an important role in blood-spinal cord barrier dysfunction, inflammation, and locomotor recovery. MMP-9 was present in the meninges and neurons of the uninjured cord. MMP-9 increased rapidly after a m...
متن کاملO2: Flaxseed Reduces Proinflammatory Factors IL-1β, IL-18 and TNF-α in Injured Spinal Cord Rat Model
The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms of injury. Secondary injury mechanisms include inflammation, oxidative stress. The secondary inflammation of spinal cord tissue after SCI was critical for the survival of motor neuron and functional recovery. Flaxseed is a rich source of lignan phytoestrogen, α-linolenic acid. Flaxseed has rema...
متن کامل