Validation procedures in radiologic diagnostic models. Neural network and logistic regression.

نویسندگان

  • E Arana
  • P Delicado
  • L Martí-Bonmatí
چکیده

OBJECTIVE To compare the performance of two predictive radiologic models, logistic regression (LR) and neural network (NN), with five different resampling methods. METHODS One hundred sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross-validation, leave-one-out, and three different bootstrap algorithms. The final results of each model were compared with error rate and the area under receiver operating characteristic curves (Az). RESULTS The NN obtained statistically higher Az values than LR with cross-validation. The remaining resampling validation methods did not reveal statistically significant differences between LR and NN rules. CONCLUSIONS The NN classifier performs better than the one based on LR. This advantage is well detected by three-fold cross-validation but remains unnoticed when leave-one-out or bootstrap algorithms are used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings

Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...

متن کامل

The Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan

One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...

متن کامل

Comparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses

Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

Predicting Early Transplant Failure: Neural Network Versus Logistic Regression Models

Cox’s proportional hazard model or logistic regression model has been the classical mathematical approach to predict transplant results, but artificial neural networks may offer better results. In order to compare both methods, a logistic regression and a neural network model were generated to predict early transplant failure assessed at 90 days. Methods: Medical charts from 701 liver transplan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative radiology

دوره 34 10  شماره 

صفحات  -

تاریخ انتشار 1999