Independence number and the number of maximum independent sets in pseudofractal scale-free web and Sierpiński gasket

نویسندگان

  • Liren Shan
  • Huan Li
  • Zhongzhi Zhang
چکیده

As a fundamental subject of theoretical computer science, the maximum independent set (MIS) problem not only is of purely theoretical interest, but also has found wide applications in various fields. However, for a general graph determining the size of a MIS is NP-hard, and exact computation of the number of all MISs is even more difficult. It is thus of significant interest to seek special graphs for which the MIS problem can be exactly solved. In this paper, we address the MIS problem in the pseudofractal scale-free web and the Sierpiński gasket, which have the same number of vertices and edges. For both graphs, we determine exactly the independence number and the number of all possible MISs. The independence number of the pseudofractal scale-free web is as twice as the one of the Sierpiński gasket. Moreover, the pseudofractal scale-free web has a unique MIS, while the number of MISs in the Sierpiński gasket grows exponentially with the number of vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domination number and minimum dominating sets in pseudofractal scale-free web and Sierpiński graph

The minimum dominating set (MDS) problem is a fundamental subject of theoretical computer science, and has found vast applications in different areas, including sensor networks, protein interaction networks, and structural controllability. However, the determination of the size of a MDS and the number of all MDSs in a general network is NP-hard, and it thus makes sense to seek particular graphs...

متن کامل

Tutte polynomial of pseudofractal scale-free web

The Tutte polynomial of a graph is a 2-variable polynomial which is quite important in both combinatorics and statistical physics. It contains various numerical invariants and polynomial invariants ,such as the number of spanning trees,the number of spanning forests , the number of acyclic orientations , the reliability polynomial,chromatic polynomial and flow polynomial . In this paper,we stud...

متن کامل

INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS

Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$,  if no two vertices of $S$ are adjacent.The  independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.

متن کامل

Coloring Sierpiński graphs and Sierpiński gasket graphs

Sierpiński graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpiński gasket graphs Sn are the graphs naturally defined by the finite number of iterations that lead to the Sierpiński gasket. An explicit labeling of the vertices of Sn is introduced. It is proved that Sn is uniquely 3-colorable, that S(n, 3) is uniquely 3-edgecolorable, and that χ′(Sn) = 4, thus answering ...

متن کامل

A 2-parametric generalization of Sierpinski gasket graphs

Graphs S[n, k] are introduced as the graphs obtained from the Sierpiński graphs S(n, k) by contracting edges that lie in no triangle. The family S[n, k] is a previously studied class of Sierpiński gasket graphs Sn. Several properties of graphs S[n, k] are studied in particular, hamiltonicity and chromatic number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 720  شماره 

صفحات  -

تاریخ انتشار 2018