Recent advances in implicit solvent-based methods for biomolecular simulations.
نویسندگان
چکیده
Implicit solvent-based methods play an increasingly important role in molecular modeling of biomolecular structure and dynamics. Recent methodological developments have mainly focused on the extension of the generalized Born (GB) formalism for variable dielectric environments and accurate treatment of nonpolar solvation. Extensive efforts in parameterization of GB models and implicit solvent force fields have enabled ab initio simulation of protein folding to native or near-native structures. Another exciting area that has benefited from the advances in implicit solvent models is the development of constant pH molecular dynamics methods, which have recently been applied to the calculations of protein pK(a) values and the studies of pH-dependent peptide and protein folding.
منابع مشابه
Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly
Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture "dewetting" effects and heter...
متن کاملEvaluating the Strength of Salt Bridges: A Comparison of Current Biomolecular Force Fields
Recent advances in computer hardware and software have made rigorous evaluation of current biomolecular force fields using microsecond-scale simulations possible. Force fields differ in their treatment of electrostatic interactions, including the formation of salt bridges in proteins. Here we conducted an extensive evaluation of salt bridge interactions in the latest AMBER, CHARMM, and OPLS for...
متن کاملImplicit solvent models.
Implicit solvent models for biomolecular simulations are reviewed and their underlying statistical mechanical basis is discussed. The fundamental quantity that implicit models seek to approximate is the solute potential of mean force, which determines the statistical weight of solute conformations, and which is obtained by averaging over the solvent degrees of freedom. It is possible to express...
متن کاملTackling Concrete Problems in Molecular Biophysics Using Monte Carlo and Related Methods: Glycosylation, Folding, Solvation
We show how Monte Carlo and related methods as complete enumeration can help to predict and understand the outcomes of concrete biophysical experiments. Three examples are discussed: the eeect of glycosylation on conformational distributions of peptides, the folding of an-helical hairpin model protein, and the structure of a longer cycloamy-lose. One of the major factors hampering the use of Mo...
متن کاملA Hybrid Explicit/Implicit Solvent Technique for Biomolecular Simulations
NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do not return it to the originator. Approved for public rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in structural biology
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2008