The Minimum Unmet Demand Stochastic Vehicle Routing Problem

نویسندگان

  • Zhihong Shen
  • Fernando Ordóñez
  • Maged Dessouky
چکیده

In this paper, we are interested in routing vehicles to minimize unmet demand under uncertainty. Such a problem arises in situations with large demand or tight deadlines, so that routes that satisfy all demand points are difficult or impossible to obtain. An important application is the distribution of medical supplies to respond to large-scale emergencies, such as natural disasters or terrorist attacks. We consider a routing problem with uncertainty both on demand and travel time. We present a chance constrained formulation of the problem that is equivalent to a deterministic problem with modified demand and travel time parameters, under mild assumptions on the distribution of stochastic parameters. A tabu heuristic is proposed to solve this MIP and simulations are conducted to evaluate the quality of routes generated from both deterministic and chance constrained formulations. We observe that chance constrained routes can reduce the unmet demand by around 2%-6% for moderately tight deadline and total supply constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stochastic Vehicle Routing Problem for Minimum Unmet Demand

In this paper, we are interested in routing vehicles to minimize unmet demand with uncertain demand and travel time parameters. Such a problem arises in situations with large demand or tight deadlines, so that routes that satisfy all demand points are difficult or impossible to obtain. An important application is the distribution of medical supplies to respond to large-scale emergencies, such a...

متن کامل

Competitive Vehicle Routing Problem with Time Windows and Stochastic Demands

The competitive vehicle routing problem is one of the important issues in transportation area. In this paper a new method for competitive VRP with time windows and stochastic demand is introduced. In the presented method a three time bounds are given and the probability of arrival time between each time bound is assumed to be uniform. The demands of each customer are different in each time wind...

متن کامل

Stochastic Approach to Vehicle Routing Problem: Development and Theories

Stochastic Approach to Vehicle Routing Problem: Development and Theories Abstract In this article, a chance constrained (CCP) formulation of the Vehicle Routing Problem (VRP) is proposed. The reality is that once we convert some special form of probabilistic constraint into their equivalent deterministic form then a nonlinear constraint generates. Knowing that reliable computer software...

متن کامل

Model and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand

The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...

متن کامل

STOCHASTIC VEHICLE ROUTING PROBLEMS WITH SIMULTANEOUS PICKUP AND DELIVERY SERVICES

The problem of designing a set of routes with minimum cost to serve a collection of customers with a fleet of vehicles is a fundamental challenge when the number of customers to be dropped or picked up is not known during the planning horizon. The purpose of this paper is to develop a vehicle routing Problem (VRP) model that addresses stochastic simultaneous pickup and delivery in the urban pub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006