1193 Transferring Experience in Reinforcement Learning through Task Decomposition ( Extended
نویسندگان
چکیده
Transfer learning refers to the process of conveying experience from a simple task to another more complex (and related) task in order to reduce the amount of time that is required to learn the latter task. Typically, in a transfer learning procedure the agent learns a behavior in a source task, and it uses the gained knowledge in order to speed up the learning process in a target task. Reinforcement Learning algorithms are time expensive when they learn from scratch, especially in complex domains, and transfer learning comprises a suitable solution to speed up the training process. In this work we propose a method that decomposes the target task in several instances of the source task and uses them to extract an advised action for the target task. We evaluate the efficacy of the proposed approach in the robotic soccer Keepaway domain. The results demonstrate that the proposed method helps to reduce the training time of the target task.
منابع مشابه
Transferring experience in reinforcement learning through task decomposition
Transfer learning refers to the process of conveying experience from a simple task to another more complex (and related) task in order to reduce the amount of time that is required to learn the latter task. Typically, in a transfer learning procedure the agent learns a behavior in a source task, and it uses the gained knowledge in order to speed up the learning process in a target task. Reinfor...
متن کاملKnowledge Transfer for Deep Reinforcement Learning with Hierarchical Experience Replay
The process for transferring knowledge of multiple reinforcement learning policies into a single multi-task policy via distillation technique is known as policy distillation. When policy distillation is under a deep reinforcement learning setting, due to the giant parameter size and the huge state space for each task domain, it requires extensive computational efforts to train the multi-task po...
متن کاملPolicy Transfer via Markov Logic Networks
We propose using a statistical-relational model, the Markov Logic Network, for knowledge transfer in reinforcement learning. Our goal is to extract relational knowledge from a source task and use it to speed up learning in a related target task. We show that Markov Logic Networks are effective models for capturing both source-task Q-functions and source-task policies. We apply them via demonstr...
متن کاملTransferring task models in Reinforcement Learning agents
The main objective of Transfer Learning is to reuse knowledge acquired in a previous learned task, in order to enhance the learning procedure in a new and more complex task. Transfer learning comprises a suitable solution for speeding up the learning procedure in Reinforcement Learning tasks. This work proposes a novel method for transferring models to Reinforcement Learning agents. The models ...
متن کاملTransfer Learning in Multi-Agent Systems Through Parallel Transfer
Transfer Learning(TL) has been shown to significantly accelerate the convergence of a reinforcement learning process. TL is the process of reusing learned information across tasks. Information is shared between a source and a target task. Previous work has required that the target task wait until the source task has finished learning before transferring information. The execution of the source ...
متن کامل