Short note on the mass matrix for Gauss-Lobatto grid points
نویسنده
چکیده
The mass matrix for Gauss-Lobatto grid points is usually approximated by GaussLobatto quadrature because this leads to a diagonal matrix that is easy to invert. The exact mass matrix and its inverse are full. We show that the exact mass matrix and its inverse differ from the approximate diagonal ones by a simple rank-1 update (outer product). They can thus be applied to an arbitrary vector in O(N) operations instead of O(N2).
منابع مشابه
A Nodal Sparse Grid Spectral Element Method for Multi-Dimensional Elliptic Partial Differential Equations
We develop a sparse grid spectral element method using nodal bases on Chebyshev-Gauss-Lobatto points for multi-dimensional elliptic equations. Since the quadratures based on sparse grid points do not have the accuracy of a usual Gauss quadrature, we construct the mass and stiffness matrices using a pseudo-spectral approach, which is exact for problems with constant coefficients and uniformly st...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملTensor product Gauss-Lobatto points are Fekete points for the cube
Tensor products of Gauss-Lobatto quadrature points are frequently used as collocation points in spectral element methods. Unfortunately, it is not known if Gauss-Lobatto points exist in non-tensor-product domains like the simplex. In this work, we show that the n-dimensional tensor-product of Gauss-Lobatto quadrature points are also Fekete points. This suggests a way to generalize spectral meth...
متن کاملA shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals
In this paper, we develop a Jacobi-Gauss-Lobatto collocation method for solving the nonlinear fractional Langevin equation with three-point boundary conditions. The fractional derivative is described in the Caputo sense. The shifted Jacobi-Gauss-Lobatto points are used as collocation nodes. The main characteristic behind the Jacobi-Gauss-Lobatto collocation approach is that it reduces such a pr...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 283 شماره
صفحات -
تاریخ انتشار 2015