Yang-Baxter maps and integrable dynamics
نویسنده
چکیده
The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and/or transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is discussed in the context of the integrability problem for the corresponding dynamical systems. Some examples of birational Yang-Baxter maps coming from the theory of the periodic dressing chain and matrix KdV equation are discussed.
منابع مشابه
ar X iv : m at h / 02 05 33 5 v 1 [ m at h . Q A ] 3 1 M ay 2 00 2 Yang - Baxter maps and integrable dynamics
The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is described. Some examples of birational Yang-Baxter maps appeared in the KdV theory are dis...
متن کامل5 J ul 2 00 2 Yang - Baxter maps and integrable dynamics February 1 , 2008
The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and/or transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is discussed in the context of the integrability problem for the corresponding dynamical s...
متن کاملIntegrable lattice equations with vertex and bond variables
We present integrable lattice equations on a two dimensional square lattice with coupled vertex and bond variables. In some of the models the vertex dynamics is independent of the evolution of the bond variables, and one can write the equations as non-autonomous “Yang-Baxter maps”. We also present a model in which the vertex and bond variables are fully coupled. Integrability is tested with alg...
متن کامل[hal-00623945, v1] Integrable lattice equations with vertex and bond variables
We present integrable lattice equations on a two dimensional square lattice with coupled vertex and bond variables. In some of the models the vertex dynamics is independent of the evolution of the bond variables, and one can write the equations as non-autonomous “Yang-Baxter maps”. We also present a model in which the vertex and bond variables are fully coupled. Integrability is tested with alg...
متن کاملSymmetry, Singularities and Integrability in Complex Dynamics I: The Reduction Problem
Quadratic systems generated using Yang-Baxter equations are integrable in a sense, but we display a deterioration in the possession of the Painlevé property as the number of equations in each ‘integrable system’ increases. Certain intermediate systems are constructed and also tested for the Painlevé property. The Lie symmetries are also computed for completeness.
متن کامل