Novel isoform-specific interfaces revealed by PKA RIIbeta holoenzyme structures.

نویسندگان

  • Simon H J Brown
  • Jian Wu
  • Choel Kim
  • Kimberly Alberto
  • Susan S Taylor
چکیده

The cAMP-dependent protein kinase catalytic (C) subunit is inhibited by two classes of functionally nonredundant regulatory (R) subunits, RI and RII. Unlike RI subunits, RII subunits are both substrates and inhibitors. Because RIIbeta knockout mice have important disease phenotypes, the RIIbeta holoenzyme is a target for developing isoform-specific agonists and/or antagonists. We also know little about the linker region that connects the inhibitor site to the N-terminal dimerization domain, although this linker determines the unique globular architecture of the RIIbeta holoenzyme. To understand how RIIbeta functions as both an inhibitor and a substrate and to elucidate the structural role of the linker, we engineered different RIIbeta constructs. In the absence of nucleotide, RIIbeta(108-268), which contains a single cyclic nucleotide binding domain, bound C subunit poorly, whereas with AMP-PNP, a non-hydrolyzable ATP analog, the affinity was 11 nM. The RIIbeta(108-268) holoenzyme structure (1.62 A) with AMP-PNP/Mn(2+) showed that we trapped the RIIbeta subunit in an enzyme:substrate complex with the C subunit in a closed conformation. The enhanced affinity afforded by AMP-PNP/Mn(2+) may be a useful strategy for increasing affinity and trapping other protein substrates with their cognate protein kinase. Because mutagenesis predicted that the region N-terminal to the inhibitor site might dock differently to RI and RII, we also engineered RIIbeta(102-265), which contained six additional linker residues. The additional linker residues in RIIbeta(102-265) increased the affinity to 1.6 nM, suggesting that docking to this surface may also enhance catalytic efficiency. In the corresponding holoenzyme structure, this linker docks as an extended strand onto the surface of the large lobe. This hydrophobic pocket, formed by the alphaF-alphaG loop and conserved in many protein kinases, also provides a docking site for the amphipathic helix of PKI. This novel orientation of the linker peptide provides the first clues as to how this region contributes to the unique organization of the RIIbeta holoenzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

R-subunit isoform specificity in protein kinase A: distinct features of protein interfaces in PKA types I and II by amide H/2H exchange mass spectrometry.

The two isoforms (RI and RII) of the regulatory (R) subunit of cAMP-dependent protein kinase or protein kinase A (PKA) are similar in sequence yet have different biochemical properties and physiological functions. To further understand the molecular basis for R-isoform-specificity, the interactions of the RIIbeta isoform with the PKA catalytic (C) subunit were analyzed by amide H/(2)H exchange ...

متن کامل

Solution scattering reveals large differences in the global structures of type II protein kinase A isoforms.

Isoform diversity within the protein kinase A (PKA) family is achieved by catalytic (C) subunits binding to different isoforms of regulatory subunit homodimers (R2). In a previous small-angle X-ray scattering study, we showed that the type Ialpha R2 homodimer has a distinctive Y-shaped structure, while the IIalpha and IIbeta homodimers are highly flexible and extended in solution. Here we prese...

متن کامل

Localization and quaternary structure of the PKA RIβ holoenzyme.

Specificity for signaling by cAMP-dependent protein kinase (PKA) is achieved by both targeting and isoform diversity. The inactive PKA holoenzyme has two catalytic (C) subunits and a regulatory (R) subunit dimer (R(2):C(2)). Although the RIα, RIIα, and RIIβ isoforms are well studied, little is known about RIβ. We show here that RIβ is enriched selectively in mitochondria and hypothesized that i...

متن کامل

Mapping intersubunit interactions of the regulatory subunit (RIalpha) in the type I holoenzyme of protein kinase A by amide hydrogen/deuterium exchange mass spectrometry (DXMS).

Protein kinase A (PKA), a central locus for cAMP signaling in the cell, is composed of regulatory (R) and catalytic (C) subunits. The C-subunits are maintained in an inactive state by binding to the R-subunit dimer in a tetrameric holoenzyme complex (R(2)C(2)). PKA is activated by cAMP binding to the R-subunits which induces a conformational change leading to release of the active C-subunit. En...

متن کامل

Identification of cAMP-dependent protein kinase holoenzymes in preantral- and preovulatory-follicle-enriched ovaries, and their association with A-kinase-anchoring proteins.

Undifferentiated cells from preantral (PA) follicles respond to high levels of cAMP in a different manner than do differentiated cells from preovulatory (PO) follicles. We hypothesized that this differential response of PA and PO cells to cAMP could be due, in part, to either a difference in the profile of isoforms that comprise the cAMP-dependent protein kinase (PKA) holoenzymes and/or a diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 393 5  شماره 

صفحات  -

تاریخ انتشار 2009