Identity-Based Revocation from Subset Difference Methods under Simple Assumptions

نویسندگان

  • Kwangsu Lee
  • Jong Hwan Park
چکیده

Identity-based revocation (IBR) is a specific kind of broadcast encryption that can effectively send a ciphertext to a set of receivers. In IBR, a ciphertext is associated with a set of revoked users instead of a set of receivers and the maximum number of users in the system can be an exponential value in the security parameter. In this paper, we reconsider the general method of Lee, Koo, Lee, and Park (ESORICS 2014) that constructs a public-key revocation (PKR) scheme by combining the subset difference (SD) method of Naor, Naor, and Lotspiech (CRYPTO 2001) and a single revocation encryption (SRE) scheme. Lee et al. left it as an open problem to construct an SRE scheme under the standard assumption without random oracles. In this work, we first propose a selectively secure SRE scheme under the standard assumption without random oracles. We also propose a fully secure SRE scheme under simple static assumptions without random oracles. Next, we present an efficient IBR scheme derived from the SD method and our SRE scheme. The security of our IBR scheme depends on that of the underlying SRE scheme. Finally, we implemented our SRE and IBR schemes and measured the performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient revocable identity-based encryption via subset difference methods

Providing an efficient revocation mechanism for identity-based encryption (IBE) is very important since a user’s credential (or private key) can be expired or revealed. Revocable IBE (RIBE) is an extension of IBE that provides an efficient revocation mechanism. Previous RIBE schemes essentially use the complete subtree (CS) scheme for key revocation. In this paper, we present a new technique fo...

متن کامل

Adaptive-ID Secure Revocable Identity-Based Encryption from Lattices via Subset Difference Method

In view of the expiration or reveal of user’s private credential (or private key) in a realistic scenario, identity-based encryption (IBE) schemes with an efficient key revocation mechanism, or for short, revocable identity-based encryption (RIBE) schemes, become prominently significant. In this paper, we present an RIBE scheme from lattices by combining two Agrawal et al.’s IBE schemes with th...

متن کامل

Enhanced Outsider-anonymous Broadcast Encryption with Subset Difference Revocation

This paper puts forward an efficient broadcast encryption in public key setting employing ternary tree subset difference method for revocation. It provides outsider anonymity disabling the revoked users from getting any information of message and concealing the set of subscribed users from the revoked users. Our approach utilizes composite order bilinear group setting and exhibits significant i...

متن کامل

Anonymous and Adaptively Secure Revocable IBE with Constant Size Public Parameters

In Identity-Based Encryption (IBE) systems, key revocation is non-trivial. This is because a user’s identity is itself a public key. Moreover, the private key corresponding to the identity needs to be obtained from a trusted key authority through an authenticated and secrecy protected channel. So far, there exist only a very small number of revocable IBE (RIBE) schemes that support non-interact...

متن کامل

An Identity-Based Group Signature with Membership Revocation in the Standard Model

Group signatures allow group members to sign an arbitrary number of messages on behalf of the group without revealing their identity. Under certain circumstances the group manager holding a tracing key can reveal the identity of the signer from the signature. Practical group signature schemes should support membership revocation where the revoked member loses the capability to sign a message on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015