Ultra-low Energy, High-Performance Dynamic Resistive Threshold Logic
نویسندگان
چکیده
We propose dynamic resistive threshold-logic (DRTL) design based on non-volatile resistive memory. A threshold logic gate (TLG) performs summation of multiple inputs multiplied by a fixed set of weights and compares the sum with a threshold. DRTL employs resistive memory elements to implement the weights and the thresholds, while a compact dynamic CMOS latch is used for the comparison operation. The resulting DRTL gate acts as a low-power, configurable dynamic logic unit and can be used to build fully pipelined, high-performance programmable computing blocks. Multiple stages in such a DRTL design can be connected using energy-efficient low swing programmable interconnect networks based on resistive switches. Owing to memory-based compact logic and interconnect design and highspeed dynamic-pipelined operation, DRTL can achieve more than two orders of magnitude improvement in energy-delay product as compared to look-up table based CMOS FPGA.
منابع مشابه
Mtl
We propose magnetic threshold-logic (MTL) design based on non-volatile spin-torque switches. A threshold logic gate (TLG) performs summation of multiple inputs multiplied by a fixed set of weights and compares the sum with a threshold. MTL employs resistive states of magnetic tunnel junctions as programmable input weights, while, a low-voltage domain-wall shift based spin-torque switch is used ...
متن کاملUltra-Low-Energy DSP Processor Design for Many-Core Parallel Applications
Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...
متن کاملSub-threshold Logic for Ultra-Low Power Consumption
In the ultra low power end of design spectrum when performance is of secondary importance, digital subthreshold logic circuits are more applicable than the regular MOS logic. In this paper, we propose two different subthreshold logic families: 1) variable threshold voltage subthreshold CMOS (VT-Sub-CMOS) and 2) subthreshold dynamic threshold voltage MOS (SubDTMOS) logic. Both these logic famili...
متن کاملTowards an Ultra-Low Energy Computation with Asynchronous Circuits
Towards an Ultra-Low Energy Computation with Asynchronous Circuits by Tsung-Te Liu Doctor of Philosophy in Engineering Electrical Engineering and Computer Sciences University of California, Berkeley Professor Jan M. Rabaey, Chair Emerging biomedical applications would benefit from the availability of digital processors with substantially improved energy-efficiency. One approach to realize ultra...
متن کاملUltra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors
Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1308.4672 شماره
صفحات -
تاریخ انتشار 2013