In silico pKa prediction

نویسندگان

  • Robert Körner
  • Iurii Sushko
  • Sergii Novotarskyi
  • Igor V. Tetko
چکیده

The biopharmaceutical profile of a compound depends directly on the dissociation constants of its acidic and basic groups, commonly expressed as the negative decadic logarithm pKa of the acid dissociation constant (Ka). The acid dissociation constant (also protonation or ionization constant) Ka is an equilibrium constant defined as the ratio of the protonated and the deprotonated form of a compound. The pKa value of a compound strongly influences its pharmacokinetic and biochemical properties. Its accurate estimation is therefore of great interest in areas such as biochemistry, medicinal chemistry, pharmaceutical chemistry, and drug development. Aside from the pharmaceutical industry, it also has relevance in environmental ecotoxicology, as well as the agrochemicals and specialty chemicals industries. In literature, a vast number of different approaches for pKa prediction can be found [1]. These approaches can be divided into two different classes. On the one hand there are direct calculations, so called ab initio methods, trying to determine the pKa value by quantum chemical or mechanical computation. On the other hand, statistical models, trained on chemical or structural descriptors. These descriptors can be, for example, of quantum chemical, semi empirical, graph topological or simple statistical nature. This type of modeling is called QSPR (Quantitative Structure Property Relationship). In our recent work, we develop such a QSPR model using localized molecular descriptors to train multiple linear regression and artificial neural networks to estimate dissociation constants (pKa). The performance of our approach is similar to that of a semi-empirical model based on frontier electron theory [2] as well as a prediction model based on Graph Kernels [3]. How such a prediction model can be built, is shown by an example performed with OCHEM, an online chemical database with an environment for modeling (http://ochem.eu/). It is a publicly accessible database for chemical compound data and predictive models. Further, users get the facility to develop, apply, and distribute predictive models, so it is unique in its combination of compound data and predictive models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of accurate pKa values of some α-substituted carboxylic acids with low cost of computational methods

The acidity constants (pKa) of thirty four (34) ;-substituted carboxylic acids in aqueous solution havebeen calculated using conductor-like polarizable continuum (C-PCM) solvation model. The gasphaseenergies at the Density Functional Theory (DFT-MPW1PW91) and solvation energies atHartree Fock (HF) are combined to estimate the pKa values which are very close to the experimentalvalues where, and ...

متن کامل

A comparative study of in silico prediction of pKa

The ionization constant (pKa) is the measure of the strength of an acid or base in a solution. Most ligands act as a weak acid or base. Accurate determination of pKa is important as it can improve the pharmaceutical properties of a compound [1]. In general, charged compounds have better solubility, but are less effective in membrane permeation. Therefore, optimization of the pharmacokinetic pro...

متن کامل

Partial Least Square and Parallel Factor Analysis Methods Applied for Spectrophotometric Determination of Cefixime in Pharmaceutical Formulations and Biological Fluid

In this study, the direct determination of cefixime as an anti-bacterial agent, in pharmaceutical formulations, urine and human blood plasma was conducted based on spectrophotometric measurements using parallel factor analysis (PARAFAC) and partial least squares (PLS). The calibration set was composed of fourteen solutions in the range of 0.50- 9.00 µg mL-1. PLS models were calculated at each p...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Partial Least Square and Parallel Factor Analysis Methods Applied for Spectrophotometric Determination of Cefixime in Pharmaceutical Formulations and Biological Fluid

In this study, the direct determination of cefixime as an anti-bacterial agent, in pharmaceutical formulations, urine and human blood plasma was conducted based on spectrophotometric measurements using parallel factor analysis (PARAFAC) and partial least squares (PLS). The calibration set was composed of fourteen solutions in the range of 0.50- 9.00 µg mL-1. PLS models were calculated at each p...

متن کامل

Pixel selection by successive projections algorithm method in multivariate image analysis for a QSAR study of antimicrobial activity for cephalosporins and design new cephalosporins

Thirty-one Cephalosporin compounds were modeled using the multivariate image analysis and applied to the quantitative structure activity relationship (MIA-QSAR) approach. The acid dissociation constants (pKa) of cephalosporins play a fundamental role in the mechanism of activity of cephalosporins. The antimicrobial activity of cephalosporins was related to their first pKa by different models. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012