Unconstrained and constrained global optimization of polynomial functions in one variable
نویسندگان
چکیده
In Floudas and Visweswaran (1990), a new global optimization algorithm (GOP) was proposed for solving constrained nonconvex problems involving quadratic and polynomial functions in the objective function and/or constraints. In this paper, the application of this algorithm to the special case of polynomial functions of one variable is discussed. The special nature of polynomial functions enables considerable simpliication of the GOP algorithm. The primal problem is shown to reduce to a simple function evaluation, while the relaxed dual problem is equivalent to the simultaneous solution of two linear equations in two variables. In addition, the one-to-one correspondence between the x and y variables in the problem enables the iterative improvement of the bounds used in the relaxed dual problem. The simpliied approach is illustrated through a simple example that shows the signiicant improvement in the underestimating function obtained from the application of the modiied algorithm. The application of the algorithm to several unconstrained and constrained polynomial function problems is demonstrated.
منابع مشابه
A Primal-Relaxed Dual Global Optimization Approach1
A deterministic global optimization approach is proposed for nonconvex constrained nonlinear programming problems. Partitioning of the variables, along with the introduction of transformation variables, if necessary, convert the original problem into primal and relaxed dual subproblems that provide valid upper and lower bounds respectively on the global optimum. Theoretical properties are prese...
متن کاملGlobal Optimization of Rational Multivariate Functions
The paper deals with unconstrained global minimization of rational functions. A necessary condition is given for the function to have a nite innmum. In case the condition is satissed, the problem is shown to be equivalent to a speciic constrained polynomial optimization problem. In this paper, we solve a relaxation of the latter formulation using semi-deenite programming. In general, the relaxa...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 2 شماره
صفحات -
تاریخ انتشار 1992