Pii: S0921-5093(00)01781-0

نویسنده

  • B. Q. Han
چکیده

Creep experiments were performed on dispersion-strengthened-cast magnesium (DSC-Mg), consisting of unalloyed magnesium with 1 mm grain size containing 30 vol.% of 0.33 mm yttria particles. Strain rates were measured for temperatures between 573 and 723 K at compressive stresses between 7 and 125 MPa. DSC-Mg exhibits outstanding creep strength as compared with other magnesium materials, but is less creep resistant than comparable DSC-Al and other dispersion-strengthened aluminum materials. Two separate creep regimes were observed in DSC-Mg, at low stresses (sB30 MPa), both the apparent stress exponent (napp:2) and the apparent activation energy (Qapp:48 kJ mol) are low, while at high stresses (s\34 MPa), these parameters are much higher (napp=9–15 and Qapp=230–325 kJ mol ) and increase, respectively, with increasing temperature and stress. The low-stress regime can be explained by an existing model of grain-boundary sliding inhibited by dispersoids at grain-boundaries. The unexpectedly low activation energy (about half the activation energy of grain boundary diffusion in pure magnesium) is interpreted as interfacial diffusion at the Mg/Y2O3 interface. The high-stress regime can be described by dislocation creep with dispersion-strengthening from the interaction of the submicron particles with matrix dislocations. The origin of the threshold stress is discussed in the light of existing dislocation climb, detachment and pile-up models. © 2001 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0921-5093(00)00999-0

Solid-state energy conversion technologies such as thermoelectric and thermionic refrigeration and power generation require materials with low thermal conductivity but good electrical conductivity, which are difficult to realize in bulk semiconductors. Nanostructures such as quantum wires and quantum wells provide alternative approaches to improve the solid-state energy conversion efficiency th...

متن کامل

Pii: S0921-5093(00)00906-0

Under certain conditions, hydrogen can degrade the mechanical properties and fracture behavior of most structural alloys; however, it also has some positive effects in metals. Several current and potential applications of hydrogen for enhancing the production and processing of materials are reviewed. These include thermohydrogen processing (THP) and forming of refractory alloys, processing of r...

متن کامل

Pii: S0921-5093(00)01382-4

Reconstituted nanostructured powders were plasma sprayed using various processing conditions to produce nanostructured alumina–titania coatings. Properties of the nanostructured coatings were related to processing conditions through a critical plasma spray parameter (CPSP) that in turn, can be related to the amount of unmelted powder incorporated into the final coating. Those coatings that reta...

متن کامل

Pii: S0921-5093(00)00996-5

This work investigates phase change phenomena due to high power pulsed laser irradiation. During high power laser heating, the intense radiation flux from the laser is transformed to the target material and raises the temperature of the target surface rapidly. When the laser fluence is high enough, melting and superheating of liquid are possible. At even higher laser fluences, the superheated l...

متن کامل

Feature extraction and tracking for scanning range sensors

A solution to the problem of simultaneously extracting and tracking a piecewise-linear range representation of a mobile robot’s local environment is presented. The classical framework of the extended Kalman filter fits this problem extremely well and the algorithm presented is immune to vehicle motion and active sensor reorientation during the finite capture time of the range scan. The paper al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000