NMR structures of double loops of an RNA aptamer against mammalian initiation factor 4A

نویسندگان

  • Taiichi Sakamoto
  • Akihiro Oguro
  • Gota Kawai
  • Takashi Ohtsu
  • Yoshikazu Nakamura
چکیده

A high affinity RNA aptamer (APT58, 58 nt long) against mammalian initiation factor 4A (eIF4A) requires nearly its entire nucleotide sequence for efficient binding. Since splitting either APT58 or eIF4A into two domains diminishes the affinity for each other, it is suggested that multiple interactions or a global interaction between the two molecules accounts for the high affinity. To understand the structural basis of APT58's global recognition of eIF4A, we determined the solution structure of two essential nucleotide loops (AUCGCA and ACAUAGA) within the aptamer using NMR spectroscopy. The AUCGCA loop is stabilized by a U-turn motif and contains a non-canonical A:A base pair (the single hydrogen bond mismatch: Hoogsteen/Sugar-edge). On the other hand, the ACAUAGA loop is stabilized by an AUA tri-nucleotide loop motif and contains the other type of A:A base pair (single hydrogen bond mismatch: Watson-Crick/Watson-Crick). Considering the known structural and functional properties of APT58, we propose that the AUCGCA loop is directly involved in the interaction with eIF4A, while the flexibility of the ACAUAGA loop is important to support this interaction. The Watson-Crick edges of C7 and C9 in the AUCGCA loop may directly interact with eIF4A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into the mechanism of a G-quadruplex-unwinding DEAH-box helicase

The unwinding of nucleic acid secondary structures within cells is crucial to maintain genomic integrity and prevent abortive transcription and translation initiation. DHX36, also known as RHAU or G4R1, is a DEAH-box ATP-dependent helicase highly specific for DNA and RNA G-quadruplexes (G4s). A fundamental mechanistic understanding of the interaction between helicases and their G4 substrates is...

متن کامل

Single-strand promoter traps for bacterial RNA polymerase.

Besides canonical double-strand DNA promoters, multisubunit RNAPs (RNA polymerases) recognize a number of specific single-strand DNA and RNA templates, resulting in synthesis of various types of RNA transcripts. The general recognition principles and the mechanisms of transcription initiation on these templates are not fully understood. To investigate further the molecular mechanisms underlying...

متن کامل

DNA mimicry by a high-affinity anti-NF-κB RNA aptamer

The binding of RNA molecules to proteins or other ligands can require extensive RNA folding to create an induced fit. Understanding the generality of this principle involves comparing structures of RNA before and after complex formation. Here we report the NMR solution structure of a 29-nt RNA aptamer whose crystal structure had previously been determined in complex with its transcription facto...

متن کامل

Identification of a 90-kDa polypeptide which associates with adenovirus VA RNAI and is phosphorylated by the double-stranded RNA-dependent protein kinase.

Interferon treatment of mammalian cells induces a double-stranded (ds) RNA-dependent protein kinase known as DAI. When activated, DAI phosphorylates the alpha-subunit of eukaryotic initiation factor eIF-2, impairing its ability to be recycled and leading to the inhibition of protein synthesis. We have identified a novel DAI substrate in the ribosomal salt wash of rabbit reticulocyte lysates. Th...

متن کامل

Knocking down gene function with an RNA aptamer expressed as part of an intron

We developed a powerful expression system to produce aptamers and other types of functional RNA in yeast to examine their effects. Utilizing the intron homing process, the aptamer-coding sequences were integrated into hundreds of rRNA genes, and the aptamers were transcribed at high levels by RNA polymerase I without any additional promoter being introduced into the cell. We used this system to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005