Thermal transport in amorphous materials: a review
نویسندگان
چکیده
Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure forms has been the cornerstone of the emerging field of ‘nanoscale heat transfer’. On the contrary, thermal properties of amorphous materials have been relatively less explored. Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought. For instance, depending on the type of amorphous materials, thermal transport occurs via three types of vibrations: propagons, diffusons, and locons, corresponding to the propagating, diffusion, and localized modes, respectively. The relative contribution of each of these modes dictates the thermal conductivity of the material, including its magnitude and its dependence on sample size and temperature. In this article, we will review the fundamental principles and recent development regarding thermal transport in amorphous semiconductors.
منابع مشابه
Mode Resolved Thermal Transport in Amorphous Silicon: a Molecular Dynamics Study
Amorphous materials have found application in all manner of consumer products and continue to show promise for next generation technologies. Yet thermal transport in this class of materials remains a point of dispute. We studied the mechanisms of thermal transport in amorphous silicon using molecular dynamics simulation and wavelet transform techniques. Perturbation of a single atom in the equi...
متن کاملMolecular dynamics study of interfacial thermal transport between silicene and substrates.
In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid sy...
متن کاملNon-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide
Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself...
متن کاملThe microscopic response method: Theory of transport for systems with both topological and thermal disorder
1 In no els In this paper, we review and substantially develop the recently proposed ‘‘Microscopic Response Method,’’ which has been devised to compute transport coefficients and especially associated temperature dependence in complex materials. The conductivity and Hall mobility of amorphous semiconductors (ASs) and semiconducting polymers are systematically derived, and shown to be more pract...
متن کاملThermal Transport in Graphene Oxide – From Ballistic Extreme to Amorphous Limit
Graphene oxide is being used in energy, optical, electronic and sensor devices due to its unique properties. However, unlike its counterpart - graphene - the thermal transport properties of graphene oxide remain unknown. In this work, we use large-scale molecular dynamics simulations with reactive potentials to systematically study the role of oxygen adatoms on the thermal transport in graphene...
متن کامل