Allosteric control of regulated scaffolding in membrane-associated guanylate kinases.
نویسندگان
چکیده
Membrane-associated guanylate kinases (MAGUKs) organize protein complexes at specific cellular sites by regulating interactions with their COOH-terminal guanylate kinase-like domains (GKs). Negative regulation of MAGUK GKs by an adjacent Src homology 3 domain (SH3) is critical for function, yet the mechanism is poorly understood. To gain insight into this process, we investigated SH3 regulation of the Discs large (Dlg) GK. Mutational analysis revealed that the binding site of the SH3-inhibited GK ligand GukHolder (GukH) is opposite the SH3 interacting surface, indicating that the SH3 does not directly occlude GukH binding. We screened for constitutively active SH3GK variants using yeast two-hybrid and a cell polarity/mitotic spindle orientation assay. Residues in both the SH3 and GK are required to maintain SH3GK inhibition, including those distant from both the SH3-GK and GK-GukH interaction sites. Activating mutations do not alter the ability of the SH3 and GK to interact in trans. On the basis of these observations, we propose that the SH3 modulates GK allostery to control its function.
منابع مشابه
MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein.
Postsynaptic density (PSD)-95/Synapse-associated protein (SAP) 90 and synaptic scaffolding molecule (S-SCAM) are neuronal membrane-associated guanylate kinases. Because PSD-95/SAP90 and S-SCAM function as synaptic scaffolding proteins, identification of ligands for these proteins is important to elucidate the structure of synaptic junctions. Here, we report a novel protein interacting with the ...
متن کاملStructure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins.
Membrane-associated guanylate kinases (MAGUKs), such as PSD-95, are modular scaffolds that organize signaling complexes at synapses and other cell junctions. MAGUKs contain PDZ domains, which recruit signaling proteins, as well as a Src homology 3 (SH3) and a guanylate kinase-like (GK) domain, implicated in scaffold oligomerization. The crystal structure of the SH3-GK module from PSD-95 reveals...
متن کاملStructural basis for nucleotide-dependent regulation of membrane-associated guanylate kinase-like domains.
CASK is a member of the membrane-associated guanylate kinases (MAGUK) homologs, a family of proteins that scaffold protein complexes at particular regions of the plasma membrane by utilizing multiple protein-binding domains. The GK domain of MAGUKs, which shares high similarity in amino acid sequence with yeast guanylate kinase (yGMPK), is the least characterized MAGUK domain both in structure ...
متن کاملStargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain.
The spatial coordination of neurotransmitter receptors with other postsynaptic signaling and structural molecules is regulated by a diverse array of cell-specific scaffolding proteins. The synaptic trafficking of AMPA receptors by the stargazin protein in some neurons, for example, depends on specific interactions between the C terminus of stargazin and the PDZ [postsynaptic density-95 (PSD-95)...
متن کاملIntramolecular interactions between the SRC homology 3 and guanylate kinase domains of discs large regulate its function in asymmetric cell division.
Membrane-associated guanylate kinases (MAGUKs) regulate the formation and function of molecular assemblies at specialized regions of the membrane. Allosteric regulation of an intramolecular interaction between the Src homology 3 (SH3) and guanylate kinase (GK) domains of MAGUKs is thought to play a central role in regulating MAGUK function. Here we show that a mutant of the Drosophila MAGUK Dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 48 42 شماره
صفحات -
تاریخ انتشار 2009