Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of two-phase volumetrically dilute flow with evaporation

نویسندگان

  • Senthilkumaran Radhakrishnan
  • Josette Bellan
چکیده

Predictions from conventional large-eddy simulation (LES) are known to be gridspacing and spatial-discretization-order dependent. In a previous article (Radhakrishnan & Bellan, J. Fluid Mech., vol. 697, 2012a, pp. 399–435), we reformulated LES for compressible single-phase flow by explicitly filtering the nonlinear terms in the governing equations so as to render the solution grid-spacing and discretization-order independent. Having shown in Radhakrishnan & Bellan (2012a) that the reformulated LES, which we call EFLES, yields grid-spacing-independent and discretization-orderindependent solutions for compressible single-phase flow, we explore here the potential of EFLES for evaporating two-phase flow where the small scales have an additional origin compared to single-phase flow. Thus, we created a database through direct numerical simulation (DNS) that when filtered serves as a template for comparisons with both conventional LES and EFLES. Both conventional LES and EFLES are conducted with two gas-phase SGS models; the drop-field SGS model is the same in all these simulations. For EFLES, we also compared simulations performed with the same SGS model for the gas phase but two different drop-field SGS models. Moreover, to elucidate the influence of explicit filtering versus gas-phase SGS modelling, EFLES with two drop-field SGS models but no gas-phase SGS models were conducted. The results from all these simulations were compared to those from DNS and from the filtered DNS (FDNS). Similar to the single-phase flow findings, the conventional LES method yields solutions which are both grid-spacing and spatialdiscretization-order dependent. The EFLES solutions are found to be grid-spacing independent for sufficiently large filter-width to grid-spacing ratio, although for the highest discretization order this ratio is larger in the two-phase flow compared to the single-phase flow. For a sufficiently fine grid, the results are also discretization-order independent. The absence of a gas-phase SGS model leads to build-up of energy near the filter cut-off indicating that while explicit filtering removes energy above the filter width, it does not provide the correct dissipation at the scales smaller than this width. A wider viewpoint leads to the conclusion that although the minimum filter-width to grid-spacing ratio necessary to obtain the unique grid-independent solution might be

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of compressible single-phase flow

In large-eddy simulation (LES), it is often assumed that the filter width is equal to the grid spacing. Predictions from such LES are grid-spacing dependent since any subgridscale (SGS) model used in the LES equations is dependent on the resolved flow field which itself varies with grid spacing. Moreover, numerical errors affect the flow field, especially the smallest resolved scales. Thus, pre...

متن کامل

Grid-independent large-eddy simulation of compressible turbulent flows using explicit filtering

The governing equations for large-eddy simulation (LES) are derived from the application of a low-pass filter to the Navier-Stokes equations. It is often assumed that discrete operations performed on a particular grid act as an implicit filter, causing simulation results to be sensitive to the mesh resolution. Alternatively, explicit filtering separates the filtering operations from discretizat...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013