Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem

نویسندگان

  • Sergio Consoli
  • Ken Darby-Dowman
  • Nenad Mladenovic
  • José A. Moreno-Pérez
چکیده

This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

Solving the minimum labelling spanning tree problem using hybrid local search

Given a connected, undirected graph whose edges are labelled (or coloured), the minimum labelling spanning tree (MLST) problem seeks a spanning tree whose edges have the smallest number of distinct labels (or colours). In recent work, the MLST problem has been shown to be NP-hard and some effective heuristics (Modified Genetic Algorithm (MGA) and Pilot Method (PILOT)) have been proposed and ana...

متن کامل

Intelligent variable neighbourhood search for the minimum labelling spanning tree problem

Given a connected, undirected graph whose edges are labelled (or coloured), the minimum labelling spanning tree (MLST) problem seeks a spanning tree whose edges have the smallest number of distinct labels (or colours). In recent work, the MLST problem has been shown to be NP-hard and some effective heuristics have been proposed and analyzed. In a currently ongoing project, we investigate an int...

متن کامل

A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree Problem

The rooted delay-constrained minimum spanning tree problem is an NP-hard combinatorial optimization problem arising for example in the design of centralized broadcasting networks where quality of service constraints are of concern. We present a construction heuristic based on Kruskal’s algorithm for finding a minimum cost spanning tree which eliminates some drawbacks of existing heuristic metho...

متن کامل

Variable neighbourhood search for the minimum labelling Steiner tree problem

We present a study on heuristic solution approaches to the minimum labelling Steiner tree problem, an NP-hard graph problem related to the minimum labelling spanning tree problem. Given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes of the graph, whose edges have the smallest number of distinct labels. Such a model may be used to repr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 196  شماره 

صفحات  -

تاریخ انتشار 2009