Translational repression by human 4E-BP1 in yeast specifically requires human eIF4E as target.
نویسندگان
چکیده
4E-binding proteins (4E-BPs) are believed to have important regulatory functions in controlling the rate of translation initiation in mammalian cells. They do so by binding to the mRNA cap-binding protein, eIF4E, thereby inhibiting formation of the cap-binding complex, a process essential for cap-dependent translation initiation. We have reproduced the translation-repressive function of human 4E-BP1 in yeast and find its activity to be dependent on substitution of human eIF4E for its yeast counterpart. Translation initiation and growth are inhibited when human 4E-BP1 is expressed in a strain with the human eIF4E substitution, but not in an unmodified strain. We have compared the relative affinities of human 4E-BP1 for human and yeast eIF4E, both in vitro using an m7GTP cap-binding assay and in vivo using a yeast two-hybrid assay, and find that the affinity of human 4E-BP1 for human eIF4E is markedly greater than for yeast eIF4E. Thus yeast eIF4E lacks structural features required for binding to human 4E-BP1. These results therefore demonstrate that the features of eIF4E required for binding to 4E-BP1 are distinct from those required for cap-complex assembly.
منابع مشابه
New Hierarchical Phosphorylation Pathway of the Translational Repressor eIF4E-binding Protein 1 (4E-BP1) in Ischemia-Reperfusion Stress*
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation ...
متن کاملTranslational control of cell fate: availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency.
Translational control has been recently added to well-recognized genomic, transcriptional, and posttranslational mechanisms regulating apoptosis. We previously found that overexpressed eukaryotic initiation factor 4E (eIF4E) rescues cells from apoptosis, while ectopic expression of wild-type eIF4E-binding protein 1 (4E-BP1), the most abundant member of the 4E-BP family of eIF4E repressor protei...
متن کاملPrognostic significance of phosphorylated 4E-binding protein 1 in non-small cell lung cancer.
Phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) binding protein (4E-BP1) results in release of eIF4E, which sequentially relieves translational repression and enhances oncogenic protein synthesis. We assessed the expression of phosphorylated 4E-BP1 (p-4E-BP1) in non-small cell lung cancer (NSCLC) and its correlation with clinicopathological parameters and patient survival...
متن کاملO-13: Phosphorylation of 4E-BP1 Promotes Translation at The Oocyte Spindle
Background: Fully grown mammalian oocyte utilizes transcripts synthetized and stored during earlier development. In the mouse oocyte there are three forms of cap-dependent translational repressors: 4E-BP1, 4E-BP2, and 4E-BP3. The dominant form, 4E-BP1, inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. Hyperphosphorylation of 4E-BP1 disrupts this inhibitor...
متن کاملTranslational control is a crucial component of cancer development and progression. Eukaryotic initiation factor (eIF) 4E mediates eIF4F association with the mRNA 5' cap structure to stimulate cap-dependent translation initiation. The eIF4E-binding protein, 4E-BP1, regulates cap-dependent translation through its phosphorylation
Translational control is a crucial component of cancer development and progression. Eukaryotic initiation factor (eIF) 4E mediates eIF4F association with the mRNA 5' cap structure to stimulate cap-dependent translation initiation. The eIF4E-binding protein, 4E-BP1, regulates cap-dependent translation through its phosphorylation at multiple sites. It has been described that some human carcinomas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 6 شماره
صفحات -
تاریخ انتشار 1999