Convergence of branching processes to the local time of a Bessel process

نویسنده

  • Bernhard Gittenberger
چکیده

We study Galton-Watson branching processes conditioned on the total progeny to be n which are scaled by a sequence cn tending to innnity as o(p n). It is shown that this process weakly converges to the totallocal time of a two-sided three-dimensional Bessel process. This is done by means of characteristic functions and a generating function approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

A Passage to the Poisson-dirichlet through the Bessel Square Processes

This principal result in this article is that every Poisson-Dirichlet distribution PD(0, θ) is an asymptotically invariant distribution for a growing collection of independent Bessel square processes of dimension zero divided by their total sum, under the condition that the sum total of their initial values grows to infinity in probability. Implications in several areas of Probability theory ha...

متن کامل

Ray-knight Theorems via Continuous Trees

In this paper, we are interested in obtaining the generalized Ray-Knight theorems (previously proved by Yor 10]) using branching processes. It was already observed in O'Connell's thesis 6] that the construction of the natural tree associated to Brownian excursion (Le Gall 4], Neveu-Pitman 5]) enables to obtain one of the "classical" Ray-Knight theorems. Our aim is to use the same ideas to get t...

متن کامل

Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy

Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...

متن کامل

Cyclically Stationary Brownian Local Time Processes

Local time processes parameterized by a circle, de ned by the occupation density up to time T of Brownian motion with constant drift on the circle, are studied for various random times T . While such processes are typically non-Markovian, their Laplace functionals are expressed by series formulae related to similar formulae for the Markovian local time processes subject to the Ray-Knight theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1998