On the Spacing of Fekete Points for a Sphere, Ball or Simplex
نویسندگان
چکیده
Suppose that K ⊂ IR is either the unit ball, the unit sphere or the standard simplex. We show that there are constants c1, c2 > 0 such that for a set of Fekete points (maximizing the Vandermonde determinant) of degree n, Fn ⊂ K, c1 n ≤ min b∈Fn b 6=a dist(a, b) ≤ c2 n , ∀a ∈ Fn where dist(a, b) is a natural distance on K that will be described in the text. §
منابع مشابه
Equidistribution of Fekete Points on the Sphere
Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-...
متن کاملEquidistribution of the Fekete Points on the Sphere
The Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of the Fekete points in the sphere. The way we proceed is by showing their connection with other array of points, the Marcinkiewicz-Z...
متن کاملSpatial statistics for lattice points on the sphere I: Individual results
We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares. We examine several statistics of these point sets, such as the electrostatic potential, Ripley's function, the variance of the number of points in random spherical caps, and the covering radius. Some of the results are conditional on t...
متن کاملComputing Fekete and Lebesgue points: Simplex, square, disk
The main purpose of our work is to provide Fekete and Lebesgue points on three basic bidimensional compact sets, the simplex, the square, and the disk, by solving numerically the corresponding large-scale nonlinear optimization problems up to degree n = 18. Our results reach and often improve those previously known [1], [3]. In the case of the simplex, due to their relevance in developing spect...
متن کاملFekete Points
In this communication we present a new method to estimate Fekete points on surfaces. Our method works in a general setting, in the sense that we can obtain good estimations of the Fekete points on piecewise regular surfaces. The determination of Fekete points in the unit sphere is considered as a model of a highly non-linear optimization problem with non-linear constraints. In fact, obtaining a...
متن کامل