Definability by Constant-Depth Polynomial-Size Circuits

نویسندگان

  • Larry Denenberg
  • Yuri Gurevich
  • Saharon Shelah
چکیده

A function of boolean arguments is symmetric if its value depends solely on the number of l 's among its arguments. In the first part of this paper we partially characterize those symmetric functions that can be computed by constant-depth polynomial-size sequences of boolean circuits, and discuss the complete characterization. (We treat both uniform and non-uniform sequences of circuits.) Our results imply that these circuits can compute functions that are not definable in first-order logic. In the second part of the paper we generalize from circuits computing symmetric functions to circuits recognizing first-order structures. By imposing fairly natural restrictions we develop a circuit model with precisely the power of first-order logic: a class of structures is first-order definable if and only if it can be recognized by a constant-depth polynomial-time sequence of such circuits. © 1986 Academic Press, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for Uniform Constant Depth Circuits by Vivek Kashinath Gore

OF THE DISSERTATION Lower Bounds for Uniform Constant Depth Circuits by Vivek Kashinath Gore, Ph.D. Dissertation Director: Professor Eric Allender Boolean circuits were introduced in complexity theory to provide a model for parallel computation. A big advantage of studying Boolean circuits is that they can be viewed as simple combinatorial objects and thus allow us to use many algebraic and com...

متن کامل

A Comparison of the Computational Power of Sigmoid and Boolean Threshold Circuits

We examine the power of constant depth circuits with sigmoid (i.e. smooth) threshold gates for computing boolean functions. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size boolean threshold circuits (i.e. circuits with linear threshold gates). On the other hand it turns out that, for any constant depth d, polynomial size sigmoid t...

متن کامل

On threshold circuits and polynomial computation

A Threshold Circuit consists of an acyclic digraph of unbounded fanin, where each node computes a threshold function or its negation. This paper investigates the computational power of Threshold Circuits. A surprising relationship is uncovered between Threshold Circuits and another class of unbounded fanin circuits which are denoted Finite Field ZP (n) Circuits, where each node computes either ...

متن کامل

On Circuit Complexity Classes and Iterated Matrix Multiplication

OF THE DISSERTATION On Circuit Complexity Classes and Iterated Matrix Multiplication by Fengming Wang Dissertation Director: Eric Allender In this thesis, we study small, yet important, circuit complexity classes within NC, such as ACC and TC. We also investigate the power of a closely related problem called Iterated Matrix Multiplication and its implications in low levels of algebraic complexi...

متن کامل

On the Computational Power of Sigmoid versus Boolean Threshold Circuits

We examine the power of constant depth circuits with sigmoid (i.e. smooth) threshold gates for computing boolean functions. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size boolean threshold circuits (i.e. circuits with boolean threshold gates). On the other hand it turns out that, for any constant depth d , polynomial size sigmoid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information and Control

دوره 70  شماره 

صفحات  -

تاریخ انتشار 1986