A Combination of Spatial Pyramid and Inverted Index for Large-Scale Image Retrieval
نویسندگان
چکیده
Large-scale image retrieval has been shown remarkable potential in real-life applications. The standard approach is based on Inverted Indexing, given images are represented using Bag-of-Words model. However, one major limitation of both Inverted Index and Bag-of-Words presentation is that they ignore spatial information of visual words in image presentation and comparison. As a result, retrieval accuracy is decreased. In this paper, the authors investigate an approach to integrate spatial information into Inverted Index to improve accuracy while maintaining short retrieval time. Experiments conducted on several benchmark datasets (Oxford Building 5K, Oxford Building 5K+100K and Paris 6K) demonstrate the effectiveness of our proposed approach. A Combination of Spatial Pyramid and Inverted Index for Large-Scale Image Retrieval
منابع مشابه
Large scale near-duplicate image retrieval using Triples of Adjacent Ranked Features (TARF) with embedded geometric information
Most approaches to large-scale image retrieval are based on the construction of the inverted index of local image descriptors or visual words. A search in such an index usually results in a large number of candidates. This list of candidates is then re-ranked with the help of a geometric verification, using a RANSAC algorithm, for example. In this paper we propose a feature representation, whic...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJMDEM
دوره 6 شماره
صفحات -
تاریخ انتشار 2015