Experimental study of aluminum-induced crystallization of amorphous silicon thin films

نویسندگان

  • G. J. Qi
  • S. Zhang
  • T. T. Tang
  • J. F. Li
  • X. W. Sun
  • X. T. Zeng
چکیده

This work was an experimental study of the aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) for the fabrication of polycrystalline silicon film. The a-Si film was deposited on silicon wafer by low pressure chemical vapor deposition (LPCVD) technique. Aluminum was sputtered on to the a-Si film at different thicknesses. The samples were annealed for 3 h at different temperatures from 250 to 550 8C. The annealed silicon films were analyzed with emphasis on their crystallinity and morphology. Results showed that in the presence of aluminum, a-Si film started crystallization at a temperature as low as 250 8C. However, high crystallization rate would be achieved only when the annealing was done at temperatures higher than 350 8C. For practical applications, this temperature might well be the lower limit in AIC method for crystallization of silicon. The thickness of aluminum film was found to play a critical role that dictated the extent of crystallization and the preferred orientation of the resulting polycrystalline thin film. D 2004 Published by Elsevier B.V. PACS: 61.43.Dq; 61.50.Cs; 72.80.Cw

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices

In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and  silicon  substrates  using  single  ion  beam  sputtering  technique.  The  physical  and  chemical properties  of  prepared  films  were  investigated  by  different  characterization  technique.  X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...

متن کامل

Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering

Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...

متن کامل

Aluminum-induced Crystallization of Semiconductor Thin Films

Thin film materials of the semiconductors, such as silicon (Si), germanium (Ge) or their alloys, are turning into the most promising functional materials in the energy technology. However, the morphologies of these semiconductor thin films must be varied to be suitable for the different applications, e.g. a large-grained layer as the seed layer of thin film solar cells, a porous structure for a...

متن کامل

Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition

Related Articles Improvement of optical performance of ZnO/GaN p-n junctions with an InGaN interlayer Appl. Phys. Lett. 101, 161905 (2012) Atomic structure of closely stacked InAs submonolayer depositions in GaAs J. Appl. Phys. 112, 083505 (2012) Experimental and molecular dynamics study of the growth of crystalline TiO2 J. Appl. Phys. 112, 073527 (2012) Degenerate crystalline silicon films by ...

متن کامل

Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005