The Erdős-szekeres Theorem: a Geometric Application of Ramsey’s Theorem

نویسنده

  • YUJIA PAN
چکیده

In this paper, we examine Ramsey’s theorem, originally a combinatorial result, and use it to prove a result of a geometric nature, the ErdősSzekeres theorem on convex polygons: given any positive integer k, it is possible to find a least positive integer, ES(k), such that any set of at least ES(k) points is guaranteed to contain the vertex set of a convex k-gon. We generalize the problem to higher dimensions and examine a better upper bound on the the Erdős-Szekeres numbers ES(k).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erdős–szekeres Theorem with Forbidden Order Types. Ii

According to the Erdős-Szekeres theorem, every set of n points in the plane contains roughly logn in convex position. We investigate how this bound changes if our point set does not contain a subset that belongs to a fixed order type.

متن کامل

Problems and Results around the Erdös-Szekeres Convex Polygon Theorem

Eszter Klein’s theorem claims that among any 5 points in the plane, no three collinear, there is the vertex set of a convex quadrilateral. An application of Ramsey’s theorem then yields the classical Erdős–Szekeres theorem [19]: For every integer n ≥ 3 there is an N0 such that, among any set of N ≥ N0 points in general position in the plane, there is the vertex set of a convex n-gon. Let f(n) d...

متن کامل

On the Subsequence Theorem of Erdős and Szekeres

In the early 1950s, Kruskal generalized the well-known subsequence theorem of Erdős and Szekeres to finite sequences over all domains satisfying his requirement of ‘relation spaces’. We give a Ramsey-theoretic perspective on the subsequence theorem and generalize it to sequences over all domains with a finite number of binary relations, without constraints. We show that Kruskal’s generalization...

متن کامل

Chromatic Variants of the Erdős-Szekeres Theorem on Points in Convex Position

Let S be a point set in the plane in general position, such that its elements are partitioned into k classes or colors. In this paper we study several variants on problems related to the Erdős-Szekeres theorem about subsets of S in convex position, when additional chromatic constraints are considered. ∗Most of this work was made possible by the Picasso French-Spanish collaboration program and t...

متن کامل

Birkhoff's Theorem from a geometric perspective: A simple example

‎From Hilbert's theorem of zeroes‎, ‎and from Noether's ideal theory‎, ‎Birkhoff derived certain algebraic concepts (as explained by Tholen) that have a dual significance in general toposes‎, ‎similar to their role in the original examples of algebraic geometry‎. ‎I will describe a simple example that illustrates some of the aspects of this relationship‎. The dualization from algebra to geometr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013