TGF-β1 and IGF-1 influence the re-differentiation capacity of human chondrocytes in 3D pellet cultures in relation to different oxygen concentrations.
نویسندگان
چکیده
To prevent de-differentiation of chondrocytes in vitro, the 3D environment, growth factors and different oxygen concentrations were considered. In this in vitro study, we quantified the influence of insulin-like growth factor (IGF)-1 and/or transforming growth factor (TGF)-β1 under differing oxygen (5/21% O(2)) levels on the proliferation and synthesis rates of hyaline extracellular matrix (ECM) components in chondrogenic pellet cultures. Human chondrocytes isolated from articular cartilage were transferred into conical tubes to form pellets. Pellets were stimulated with TGF-β1 and/or IGF-1. After 2 and 5 weeks of cultivation the DNA concentration and expression of pro-collagen type 1, type 2 and aggrecan were analysed. Under hypoxia the DNA content remained stable. In contrast, under normoxia, cells showed an increase of DNA concentration after stimulation with TGF-β1/IGF-1 and TGF-β1. Nevertheless, DNA contents under normoxia did not reach the values of hypoxic-cultivated cells. Under both culture conditions a reduced synthesis of pro-collagen type 1 could be determined. Although the expression of pro-collagen type 2 was significantly higher under normoxia, a decrease in the case of TGF-β1/IGF-1- and IGF-1-stimulated cells was observed. Under hypoxia pro-collagen type 2 contents remained stable or increased for TGF-β1/IGF-1-stimulated cells. Furthermore, incubation with growth factors resulted in aggrecan accumulation under hypoxia, while a reduced expression under normoxia could be determined for TGF-β1/IGF-1- and IGF-1-stimulated cells. Our results demonstrate that the treatment with growth factors causes differences in the expression of ECM compounds within pellet cultures. While under normoxia TGF-β1 alone leads to a positive effect of the expression of hyaline cartilage-specific ECM components, an additive effect of both growth factors was only determined under hypoxia.
منابع مشابه
Gene expression analysis of growth factor receptors in human chondrocytes in monolayer and 3D pellet cultures
The main goal of cartilage repair is to create functional tissue by enhancing the in vitro conditions to more physiological in vivo conditions. Chondrogenic growth factors play an important role in influencing cartilage homeostasis. Insulin‑like growth factor (IGF)‑1 and transforming growth factor (TGF)‑β1 affect the expression of collagen type II (Col2) and glycosaminoglycans (GAGs) and, there...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملTransforming Growth Factor-β1 Preserves Bovine Nasal Cartilage against Degradation Induced by Interleukin-1α in Explant Culture
Background and Aims: Chondrocytes and their differentiation play a central role in joint diseases. Effect of the transforming growth factor (TGF)-β1 on chondrocyte characteristics and differentiation is not clearly understood. This study was undertaken to investigate the effects of TGF-β1 on tissue characteristics and morphology of chondrocytes against degradation induced by interleuk...
متن کاملQuantitative Analysis of the Proliferation and Differentiation of Rat Articular Chondrocytes in Alginate 3D Culture
Background: While articular chondrocytes are among those appropriate candidates for cartilage regeneration, the cell dedifferentiation during monolayer culture has limited their application. Several investigations have indicated the usefulness of alginate, but the topic of proliferation and differentiation of chondrocytes in alginate culture has still remained controversial. Methods: Rat articu...
متن کاملDifferentiation of Human Bone Marrow Mesenchymal Stem Cells to Chondrocytes for Construction of Three-dimensional Cartilage Tissue.
A differentiation method of human bone marrow mesenchymal stem cells (MSCs) to chondrocytes was developed for the construction of a three-dimensional (3D) cartilage tissue. The adhesive cells, which were isolated from a human bone marrow aspirate were embedded in type I collagen in a poly-L: -lactate-glycolic acid copolymer (PLGA) mesh and cultivated for 4 week together with growth factors. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2012