Unscented Transformation for Estimating the Lyapunov Exponents of Chaotic Time Series Corrupted by Random Noise

نویسندگان

  • K. Kamalanand
  • P. Mannar Jawahar
چکیده

Many systems in the natural world exhibit chaos or non-linear behavior, the complexity of which is so great that they appear to be random. Identification of chaos in experimental data is essential for characterizing the system and for analyzing the predictability of the data under analysis. The Lyapunov exponents provide a quantitative measure of the sensitivity to initial conditions and are the most useful dynamical diagnostic for chaotic systems. However, it is difficult to accurately estimate the Lyapunov exponents of chaotic signals which are corrupted by a random noise. In this work, a method for estimation of Lyapunov exponents from noisy time series using unscented transformation is proposed. The proposed methodology was validated using time series obtained from known chaotic maps. In this paper, the objective of the work, the proposed methodology and validation results are discussed in detail. Keywords—Lyapunov exponents, unscented transformation, chaos theory, neural networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

Estimating Lyapunov Exponents in Chaotic Time Series with Locally Weighted Regression

Nonlinear dynamical systems often exhibit chaos, which is characterized by sensitive dependence on initial values or more precisely by a positive Lyapunov exponent. Recognizing and quantifying chaos in time series represents an important step toward understanding the nature of random behavior and revealing the extent to which short-term forecasts may be improved. We will focus on the statistica...

متن کامل

Local Lyapunov Exponents : Predictability depends on where you are

The dominant Lyapunov exponent of a dynamical system measures the average rate at which nearby trajectories of a system diverge. Even though a positive exponent provides evidence for chaotic dynamics and upredictability, there may predictability of the time series over some finite time periods. In this paper one version of a local Lyapunov exponent is defined for a dynamic system perturbed by n...

متن کامل

Investigating the Chaotic Nature of Flow the Upstream and Downstream of Zayandehrud-Dam Reservoir Using Chaotic Systems’ Criteria

River discharge is among the influential factors on the operation of water resources systems and the design of hydraulic structures, such as dams; so the study of it is of great importance. Several effective factors on this non-linear phenomenon have caused the discharge to be assumed as being accidental. According to the basics the chaos theory, the seemingly random and chaotic systems have re...

متن کامل

Inability of Lyapunov exponents to predict epileptic seizures.

It has been claimed that Lyapunov exponents computed from electroencephalogram or electrocorticogram (ECoG) time series are useful for early prediction of epileptic seizures. We show, by utilizing a paradigmatic chaotic system, that there are two major obstacles that can fundamentally hinder the predictive power of Lyapunov exponents computed from time series: finite-time statistical fluctuatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013