Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

نویسندگان

  • F Griggio
  • S Jesse
  • A Kumar
  • O Ovchinnikov
  • H Kim
  • T N Jackson
  • D Damjanovic
  • S V Kalinin
  • S Trolier-McKinstry
چکیده

The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Film Thickness on the Piezoelectric Properties of Lead Zirconate Titanate Thick Films Fabricated by Aerosol Deposition

Lead zirconate titanate (PZT) thick films with uniformly dispersed submicrometer pores were successfully fabricated on platinized silicon substrates with various thicknesses ranging from 1 lm to over 100 lm by aerosol deposition. Mixed powders of PZT and polyvinylidene fluoride (PVDF) were deposited for initial fabrication of composite films. After burn-out of the PVDF phase from the composite ...

متن کامل

Photochemical growth of silver nanoparticles on c(-) and c(+) domains on lead zirconate titanate thin films.

The photochemical growth of silver nanoparticles on the negative domains of lead zirconate titanate thin films is reported. A sample of highly [100] orientated lead zirconate titanate, with a ratio of 30:70, that was 65-70 nm thick grown on Pt-coated MgO was poled by use of piezoresponse force microscopy to produce defined regions of surface positive and negative polarization. A comparison betw...

متن کامل

Properties of piezoelectric PZT thin films for microactuator applications

The piezoelectric properties of lead zirconate titanate (PZT) thin films deposited on thick silicon substrates and thin silicon membranes were investigated using optical interferometry. The effect of the geometrical constraints and clamping effects on the piezoelectric response is discussed. The study of the dielectric permittivity and the loss as a function of the amplitude of the alternating ...

متن کامل

Polarization reorientation in ferroelectric lead zirconate titanate thin films with electron beams

Ferroelectric domain patterning with an electron beam is demonstrated. Polarization of lead zirconate titanate thin films is shown to be reoriented in both positive and negative directions using piezoresponse force and scanning surface potential microscopy. Reorientation of the ferroelectric domains is a response to the electric field generated by an imbalance of electron emission and trapping ...

متن کامل

Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films

Lead zirconate titanate ~PZT! thin films with a Zr/Ti ratio of 52/48 were deposited on platinized silicon substrates by a sol-gel method and crystallized with preferred ~111! or ~100! orientation. Both the piezoelectric properties (d33) and the field-induced strains of the films with different thickness and preferred orientation were measured by a laser Doppler heterodyne interferometer. The we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 108 15  شماره 

صفحات  -

تاریخ انتشار 2012