A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation.
نویسندگان
چکیده
Local translation in neuronal dendrites is an important basis for long-term synaptic plasticity, and RNA granules in the dendrites are involved in the local translation. Here, we identify RNG105 (RNA granule protein 105), a novel RNA-binding protein, as a component of the RNA granules in dendrites of hippocampal neurons. The RNG105-localizing RNA granules contain mRNAs, the translational products of which play key roles in synaptic plasticity. RNG105 has an ability to repress translation both in vitro and in vivo, consistent with the finding that the RNA granule is translationally arrested in the basal conditions. Dissociation of RNG105 from the RNA granules is induced by BDNF, a growth factor responsible for synaptic plasticity. The RNG105 dissociation is coincident with the induction of local translation near the granules. These findings suggest that RNG105 is a translational repressor in the RNA granules and provide insight into the link between RNG105 dynamics and local translational regulation.
منابع مشابه
Fragile Mental Retardation Protein Interacts with the RNA-Binding Protein Caprin1 in Neuronal RiboNucleoProtein Complexes
Fragile X syndrome is caused by the absence of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein. FMRP is associated with messenger RiboNucleoParticles (mRNPs) present in polyribosomes and its absence in neurons leads to alteration in synaptic plasticity as a result of translation regulation defects. The molecular mechanisms by which FMRP plays a role in translation regula...
متن کاملTransport Granules Bound with Nuclear Cap Binding Protein and Exon Junction Complex Are Associated with Microtubules and Spatially Separated from eIF4E Granules and P Bodies in Human Neuronal Processes
RNA transport and regulated local translation play critically important roles in spatially restricting gene expression in neurons. Heterogeneous population of RNA granules serve as motile units to translocate, store, translate, and degrade mRNAs in the dendrites contain cis-elements and trans-acting factors such as RNA-binding proteins and microRNAs to convey stimulus-, transcript-specific loca...
متن کاملThe fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules.
Fragile X mental retardation 1 protein (FMRP) is an RNA-binding protein whose absence results in the fragile X syndrome, the most common inherited form of mental retardation. FMRP contains multiple domains with apparently differential affinity to mRNA and interacts also with protein partners present in ribonucleoprotein complexes called RNA granules. In neurons, these particles travel along den...
متن کاملThe nuclear transcription factor RARalpha associates with neuronal RNA granules and suppresses translation.
All-trans-retinoic acid stimulates dendritic growth in hippocampal neurons within minutes by activating mitogen-activated protein kinase and mTOR and increasing dendritic translation of calcium calmodulin-dependent protein kinase II alpha and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptor subunit GluR1. Hippocampal neurons express RARalpha in dendrites, and knocking down RA...
متن کاملNeurotrophin-3 signals redistribute RNA in neurons.
The translocation of specific mRNAs to dendrites and their potential for locally regulated translation are likely to serve as an effector in neuronal plasticity. Whether translation in dendrites is regulated by delivery of the RNA to sites of plasticity or a stationary pool of localized RNA undergoes enhanced translational efficiency is not clear. We show that RNA can translocate into dendrites...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 17 شماره
صفحات -
تاریخ انتشار 2005