Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization

نویسندگان

  • Daniel Golovin
  • Andreas Krause
چکیده

Solving stochastic optimization problems under partial observability, where one needs to adaptively make decisions with uncertain outcomes, is a fundamental but notoriously difficult challenge. In this paper, we introduce the concept of adaptive submodularity, generalizing submodular set functions to adaptive policies. We prove that if a problem satisfies this property, a simple adaptive greedy algorithm is guaranteed to be competitive with the optimal policy. We illustrate the usefulness of the concept by giving several examples of adaptive submodular objectives arising in diverse applications including sensor placement, viral marketing and pool-based active learning. Proving adaptive submodularity for these problems allows us to recover existing results in these applications as special cases and leads to natural generalizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization

Solving stochastic optimization problems under partial observability, where one needs to adaptively make decisions with uncertain outcomes, is a fundamental but notoriously difficult challenge. In this paper, we introduce the concept of adaptive submodularity, generalizing submodular set functions to adaptive policies. We prove that if a problem satisfies this property, a simple adaptive greedy...

متن کامل

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Active learning can lead to a dramatic reduction in labeling effort. However, in many practical implementations (such as crowdsourcing, surveys, high-throughput experimental design), it is preferable to query labels for batches of examples to be labelled in parallel. While several heuristics have been proposed for batch-mode active learning, little is known about their theoretical performance. ...

متن کامل

Adaptive Stochastic Optimization: From Sets to Paths

Adaptive stochastic optimization (ASO) optimizes an objective function adaptively under uncertainty. It plays a crucial role in planning and learning under uncertainty, but is, unfortunately, computationally intractable in general. This paper introduces two conditions on the objective function, the marginal likelihood rate bound and the marginal likelihood bound, which, together with pointwise ...

متن کامل

Adaptive Budget Allocation for Maximizing Influence of Advertisements

The budget allocation problem is an optimization problem arising from advertising planning. In the problem, an advertiser has limited budgets to allocate across media, and seeks to optimize the allocation such that the largest fraction of customers can be influenced. It is known that this problem admits a (1 1/e)-approximation algorithm. However, no previous studies on this problem considered a...

متن کامل

Budgeted stream-based active learning via adaptive submodular maximization

Active learning enables us to reduce the annotation cost by adaptively selecting unlabeled instances to be labeled. For pool-based active learning, several effective methods with theoretical guarantees have been developed through maximizing some utility function satisfying adaptive submodularity. In contrast, there have been few methods for stream-based active learning based on adaptive submodu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010