Harmonic Besov Spaces on the Unit Ball in R
نویسنده
چکیده
We define and characterize the harmonic Besov space Bp, 1 ≤ p ≤ ∞, on the unit ball B in Rn. We prove that the Besov spaces Bp, 1 ≤ p ≤ ∞, are natural quotient spaces of certain Lp spaces. The dual of Bp, 1 ≤ p < ∞, can be identified with Bq , 1/p + 1/q = 1, and the dual of the little harmonic Bloch space B0 is B1.
منابع مشابه
On characterizations of hyperbolic harmonic Bloch and Besov spaces
We define hyperbolic harmonic $omega$-$alpha$-Bloch space $mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and characterize it in terms of $$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}},$$ where $0leq gammaleq 1$. Similar results are extended to little $omega$-$alpha$-Bloch and Besov spaces. These obtained...
متن کاملWeighted Lipschitz Continuity and Harmonic Bloch and Besov Spaces in the Real Unit Ball
The characterization by weighted Lipschitz continuity is given for the Bloch space on the unit ball of Rn. Similar results are obtained for little Bloch and Besov spaces.
متن کاملSOME REMARKS ON WEAKLY INVERTIBLE FUNCTIONS IN THE UNIT BALL AND POLYDISK
We will present an approach to deal with a problem of existence of (not) weakly invertible functions in various spaces of analytic functions in the unit ball and polydisk based on estimates for integral operators acting between functional classes of different dimensions.
متن کاملBergman-type Singular Operators and the Characterization of Carleson Measures for Besov–sobolev Spaces on the Complex Ball
The purposes of this paper are two fold. First, we extend the method of non-homogeneous harmonic analysis of Nazarov, Treil and Volberg to handle “Bergman–type” singular integral operators. The canonical example of such an operator is the Beurling transform on the unit disc. Second, we use the methods developed in this paper to settle the important open question about characterizing the Carleso...
متن کاملBergman-type Singular Integral Operators and the Characterization of Carleson Measures for Besov–sobolev Spaces on the Complex Ball
The purposes of this paper are two fold. First, we extend the method of non-homogeneous harmonic analysis of Nazarov, Treil and Volberg to handle “Bergman–type” singular integral operators. The canonical example of such an operator is the Beurling transform on the unit disc. Second, we use the methods developed in this paper to settle the important open question about characterizing the Carleso...
متن کامل