Complexity of DNF minimization and isomorphism testing for monotone formulas
نویسندگان
چکیده
We investigate the complexity of finding prime implicants and minimum equivalent DNFs for Boolean formulas, and of testing equivalence and isomorphism of monotone formulas. For DNF related problems, the complexity of the monotone case differs strongly from the arbitrary case. We show that it is DP-complete to check whether a monomial is a prime implicant for an arbitrary formula, but the equivalent problem for monotone formulas is in L. We show PP-completeness of checking if the minimum size of a DNF for a monotone formula is at most k, and for k in unary, we show that the complexity of the problem drops to coNP. In [Uma01] a similar problem for arbitrary formulas was shown to be Σp2-complete. We show that calculating the minimum equivalent DNF for a monotone formula is possible in output-polynomial time if and only if P = NP. Finally, we disprove a conjecture from [Rei03] by showing that checking whether two formulas are isomorphic has the same complexity for arbitrary formulas as for monotone formulas.
منابع مشابه
Complexity of DNF and Isomorphism of Monotone Formulas
We investigate the complexity of finding prime implicants and minimal equivalent DNFs for Boolean formulas, and of testing equivalence and isomorphism of monotone formulas. For DNF related problems, the complexity of the monotone case strongly differs from the arbitrary case. We show that it is DP-complete to check whether a monomial is a prime implicant for an arbitrary formula, but checking p...
متن کاملEvaluation of DNF Formulas
We consider the Stochastic Boolean Function Evaluation (SBFE) problem for classes of DNF formulas. The SBFE problem for DNF formulas is a “sequential testing” problem where we need to determine the value of DNF formula on an initially unknown input x = (x1, ..., xn), when there is a cost ci associated with obtaining the value of xi, each xi is equal to 1 with known probability pi, and the xi ar...
متن کاملIsomorphism testing of read-once functions and polynomials
In this paper, we study the isomorphism testing problem of formulas in the Boolean and arithmetic settings. We show that isomorphism testing of Boolean formulas in which a variable is read at most once (known as read-once formulas) is complete for log-space. In contrast, we observe that the problem becomes polynomial time equivalent to the graph isomorphism problem, when the input formulas can ...
متن کاملOn DNF Approximators for Monotone Boolean Functions
We study the complexity of approximating monotone Boolean functions with disjunctive normal form (DNF) formulas, exploring two main directions. First, we construct DNF approximators for arbitrary monotone functions achieving one-sided error: we show that every monotone f can be ε-approximated by a DNF g of size 2n−Ωε( √ n) satisfying g(x) ≤ f(x) for all x ∈ {0, 1}. This is the first non-trivial...
متن کاملSymmetric Approximation Arguments for Monotone Lower Bounds without Sun owers
We propose a symmetric version of Razborov's method of approximation to prove lower bounds for monotone circuit complexity. Traditionally, only DNF formulas have been used as approximators, whereas we use both CNF and DNF formulas. As a consequence we no longer need the Sun-ower lemma that has been essential for the method of approximation. The new approximation argument corresponds to Haken's ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 206 شماره
صفحات -
تاریخ انتشار 2008