Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent
نویسندگان
چکیده
Matrix completion, where we wish to recover a low rank matrix by observing a few entries from it, is a widely studied problem in both theory and practice with wide applications. Most of the provable algorithms so far on this problem have been restricted to the offline setting where they provide an estimate of the unknown matrix using all observations simultaneously. However, in many applications, the online version, where we observe one entry at a time and dynamically update our estimate, is more appealing. While existing algorithms are efficient for the offline setting, they could be highly inefficient for the online setting. In this paper, we propose the first provable, efficient online algorithm for matrix completion. Our algorithm starts from an initial estimate of the matrix and then performs non-convex stochastic gradient descent (SGD). After every observation, it performs a fast update involving only one row of two tall matrices, giving near linear total runtime. Our algorithm can be naturally used in the offline setting as well, where it gives competitive sample complexity and runtime to state of the art algorithms. Our proofs introduce a general framework to show that SGD updates tend to stay away from saddle surfaces and could be of broader interests to other non-convex problems.
منابع مشابه
No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis
In this paper we develop a new framework that captures the common landscape underlying the common non-convex low-rank matrix problems including matrix sensing, matrix completion and robust PCA. In particular, we show for all above problems (including asymmetric cases): 1) all local minima are also globally optimal; 2) no highorder saddle points exists. These results explain why simple algorithm...
متن کاملOnline Passive-Aggressive Algorithms for Non-Negative Matrix Factorization and Completion
Stochastic Gradient Descent (SGD) is a popular online algorithm for large-scale matrix factorization. However, SGD can often be di cult to use for practitioners, because its performance is very sensitive to the choice of the learning rate parameter. In this paper, we present non-negative passiveaggressive (NN-PA), a family of online algorithms for non-negative matrix factorization (NMF). Our al...
متن کاملMatrix Completion has No Spurious Local Minimum
Matrix completion is a basic machine learning problem that has wide applications, especially in collaborative filtering and recommender systems. Simple non-convex optimization algorithms are popular and effective in practice. Despite recent progress in proving various non-convex algorithms converge from a good initial point, it remains unclear why random or arbitrary initialization suffices in ...
متن کاملEscaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition
We analyze stochastic gradient descent for optimizing non-convex functions. In many cases for non-convex functions the goal is to find a reasonable local minimum, and the main concern is that gradient updates are trapped in saddle points. In this paper we identify strict saddle property for non-convex problem that allows for efficient optimization. Using this property we show that from an arbit...
متن کاملAn Algorithm for Online Tensor Prediction: DRAFT Do Not Distribute
We present a new method for online prediction and learning of tensors (N -way arrays N > 2) from sequential measurements. We focus on the specific case of 3-D tensors and exploit a recently developed framework of structured tensor decompositions proposed in [1]. In this framework it is possible to treat 3-D tensors as linear operators and appropriately generalize notions of rank and positive de...
متن کامل