Stability of Runge-Kutta methods for quasilinear parabolic problems
نویسندگان
چکیده
We consider a quasilinear parabolic problem u′(t) = Q ( u(t) ) u(t), u(t0) = u0 ∈ D, where Q(w) : D ⊂ X → X, w ∈ W ⊂ X, is a family of sectorial operators in a Banach space X with fixed domain D. This problem is discretized in time by means of a strongly A(θ)-stable, 0 < θ ≤ π/2, Runge–Kutta method. We prove that the resulting discretization is stable, under some natural assumptions on the dependence of Q(w) with respect to w. Our results are useful for studying in Lp norms, 1 ≤ p ≤ +∞, many problems arising in applications. Some auxiliary results for time-dependent parabolic problems are also provided.
منابع مشابه
Stability of Runge-Kutta methods for abstract time-dependent parabolic problems: The Hölder case
We consider an abstract time-dependent, linear parabolic problem u′(t) = A(t)u(t), u(t0) = u0, where A(t) : D ⊂ X → X, t ∈ J , is a family of sectorial operators in a Banach space X with time-independent domain D. This problem is discretized in time by means of an A(θ) strongly stable Runge-Kutta method, 0 < θ < π/2. We prove that the resulting discretization is stable, under the assumption ‖(A...
متن کاملWeak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations
We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the stepsize reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta Chebyshev me...
متن کاملOn Runge-Kutta Methods for Parabolic Problems with Time-Dependent Coefficients
Galerkin fully discrete approximations for parabolic equations with time-dependent coefficients are analyzed. The schemes are based on implicit Runge-Kutta methods, and are coupled with preconditioned iterative methods to approximately solve the resulting systems of linear equations. It is shown that for certain classes of Runge-Kutta methods, the fully discrete equations exhibit parallel featu...
متن کاملOptimizing some 3-stage W-methods for the time integration of PDEs
The optimization of some W-methods [7] for the time integration of time-dependent PDEs in several spatial variables is considered. In [2, Theorem 1] several three-parametric families of three-stage W-methods for the integration of IVPs in ODEs were studied. Besides, the optimization of several specific methods for PDEs when the Approximate Matrix Factorization Splitting (AMF) [3, 4] is used to ...
متن کاملExplicit exponential Runge-Kutta methods of high order for parabolic problems
Exponential Runge–Kutta methods constitute efficient integrators for semilinear stiff problems. So far, however, explicit exponential Runge–Kutta methods are available in the literature up to order 4 only. The aim of this paper is to construct a fifth-order method. For this purpose, we make use of a novel approach to derive the stiff order conditions for high-order exponential methods. This all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000