An Algorithm for Detecting Intrinsically Knotted Graphs

نویسندگان

  • Jonathan Miller
  • Ramin Naimi
چکیده

We describe an algorithm that recognizes seemingly most — possibly all — intrinsically knotted (IK) graphs, and can help find knotless embeddings for graphs that are not IK. The algorithm, implemented as a Mathematica program, has already been used in [6] to greatly expand the list of known minor minimal IK graphs, and to find knotless embeddings for some graphs that had previously resisted attempts to classify them as IK or non-IK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On strongly almost trivial embeddings of graphs

An algorithm for detecting intrinsically knotted graphs, yielding many new minor minimal IK graphs. Ramin Naimi Occidental College We describe an algorithm that detects seemingly most (and possibly all) intrinsically knotted (IK) graphs, and can help find knotless embeddings for graphs that are not IK. We have used this algorithm, implemented as a Mathematica program, to find many new minor min...

متن کامل

Many, Many More Intrinsically Knotted Graphs

We list more than 200 new examples of minor minimal intrinsically knotted graphs and describe many more that are intrinsically knotted and likely minor minimal.

متن کامل

More intrinsically knotted graphs

We demonstrate four intrinsically knotted graphs that do not contain each other, nor any previously known intrinsically knotted graph, as a minor.

متن کامل

Intrinsic Linking and Knotting of Graphs in Arbitrary 3–manifolds

We prove that a graph is intrinsically linked in an arbitrary 3-manifold M if and only if it is intrinsically linked in S. Also, assuming the Poincaré Conjecture, a graph is intrinsically knotted in M if and only if it is intrinsically knotted in S.

متن کامل

Intrinsic Linking and Knotting in Virtual Spatial Graphs

We introduce a notion of intrinsic linking and knotting for virtual spatial graphs. Our theory gives two filtrations of the set of all graphs, allowing us to measure, in a sense, how intrinsically linked or knotted a graph is; we show that these filtrations are descending and non-terminating. We also provide several examples of intrinsically virtually linked and knotted graphs. As a byproduct, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2014