Effects of the TWis mutation on notochord formation and mesodermal patterning

نویسندگان

  • Frank L. Conlon
  • Christopher V.E. Wright
  • Elizabeth J. Robertson
چکیده

The mouse T (Brachyury) gene is required for early mesodermal patterning. Mice homozygous for mutations in T die at midgestation and display defects in mesodermal tissues such as the notochord, the allantois and the somitic mesoderm. To examine the role of T in patterning of somitic and posterior mesoderm along the anterior-posterior axis, we have examined the expression of a panel of molecular markers normally localized to the sub-set of cell types affected in TWis mutant mice. Through the use of whole-mount antibody double labelling techniques, we have analysed the spatial relationships of distinct mesodermal populations relative to cells expressing the T protein. We have also examined the consequences of the TWis mutation on mesodermal populations recognised by these markers. We demonstrate that TWis homozygous mutants retain the ability to form notochordal precursor cells, as identified both by the T antibody and the expression of sonic hedgehog/vertebrate homolog of hedgehog 1 (Shh/vhh-1) and goosecoid, however, these cells fail to proliferate or differentiate. These early notochordal defects appear to result in aberrant somitic differentiation as revealed by the distribution of mox-1 protein and twist RNA expression. Moreover, twist expression in paraxial mesoderm appears to be dependent on normal T activity, while Shh/vhh-1, goosecoid, mox-1 and cdx-4 are not T dependent. We propose that T is required for the maintenance of notochordal tissue and subsequent signals required for somite differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos.

The murine Brachyury (T) gene is required in mesoderm formation. Mutants carrying different T alleles show a graded severity of defects correlated with gene dosage along the body axis. The phenotypes range from shortening of the tail to the malformation of sacral vertebrae in heterozygotes, and to disruption of trunk development and embryonic death in homozygotes. Defects include a severe distu...

متن کامل

Endoderm patterning by the notochord: development of the hypochord in Xenopus.

The patterning and differentiation of the vertebrate endoderm requires signaling from adjacent tissues. In this report, we demonstrate that signals from the notochord are critical for the development of the hypochord, which is a transient, endodermally derived structure that lies immediately ventral to the notochord in the amphibian and fish embryo. It appears likely that the hypochord is requi...

متن کامل

Eph Regulates Dorsoventral Asymmetry of the Notochord Plate and Convergent Extension-Mediated Notochord Formation

BACKGROUND The notochord is a signaling center required for the patterning of the vertebrate embryonic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and estab...

متن کامل

Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage.

The appearance of the embryonic shield, a slight thickening at the leading edge of the blastoderm during the formation of the germ ring, is one of the first signs of dorsoventral polarity in the zebrafish embryo. It has been proposed that the shield plays a role in fish embryo patterning similar to that attributed to the amphibian dorsal lip. In a recent study, we fate mapped many of the cells ...

متن کامل

The expression pattern of Xenopus Mox-2 implies a role in initial mesodermal differentiation

We have isolated a Xenopus homolog of the murine Mox-2 gene. As is the case for the mouse homolog, mesoderm specific expression of Xenopus Mox-2 (X. Mox-2) expression begins during gastrulation. Using whole mount in situ hybridization, we show that X. Mox-2 is expressed in undifferentiated dorsal, lateral and ventral mesoderm in the posterior of neurula/tailbud embryos, with expression more ant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 49  شماره 

صفحات  -

تاریخ انتشار 1995