A new familial form of a late-onset, persistent hyperinsulinemic hypoglycemia of infancy caused by a novel mutation in KCNJ11
نویسندگان
چکیده
The ATP-sensitive potassium channel (KATP) functions as a metabo-electric transducer in regulating insulin secretion from pancreatic β-cells. The pancreatic KATP channel is composed of a pore-forming inwardly-rectifying potassium channel, Kir6.2, and a regulatory subunit, sulphonylurea receptor 1 (SUR1). Loss-of-function mutations in either subunit often lead to the development of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). PHHI is a rare genetic disease and most patients present with immediate onset within the first few days after birth. In this study, we report an unusual form of PHHI, in which the index patient developed hyperinsulinemic hypoglycemia after 1 year of age. The patient failed to respond to routine medication for PHHI and underwent a complete pancreatectomy. Genotyping of the index patient and his immediate family members showed that the patient and other family members with hypoglycemic episodes carried a heterozygous novel mutation in KCNJ11 (C83T), which encodes Kir6.2 (A28V). Electrophysiological and cell biological experiments revealed that A28V hKir6.2 is a dominant-negative, loss-of-function mutation and that KATP channels carrying this mutation failed to reach the cell surface. De novo protein structure prediction indicated that this A28V mutation reoriented the ER retention motif located at the C-terminal of the hKir6.2, and this result may explain the trafficking defect caused by this point mutation. Our study is the first report of a novel form of late-onset PHHI that is caused by a dominant mutation in KCNJ11 and exhibits a defect in proper surface expression of Kir6.2.
منابع مشابه
Persistent Hyperinsulinemic Hypoglycemia of Infancy: A Rare Case with Multiple Anomalies
Background: Few cases of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) have been reported, so far. The main concern in the management of PHHI is to prevent severe hypoglycemia, which can lead to coma, brain damage and mental retardation. Total or subtotal pancreatectomy is normally required for the infants, despite the availability of medical therapies. Case report: In this report...
متن کاملHyperinsulinemic Hypoglycemia of Infancy due to Novel HADH Mutation in Two Siblings.
BACKGROUND Hyperinsulinemia is the commonest cause of persistent hypoglycemia in infancy. Inactivating mutations in the genes ABCC8 and KCNJ11 are the commonest cause. Mutation in the HADH gene, which encodes the short-chain-L-3-hydroxyacyl-CoA dehydrogenase, is a rare cause. CASE CHARACTERISTICS Two Indian sisters who presented with hyperinsulinemic hypoglycemia of infancy. OBSERVATION/INT...
متن کاملScreening for Mutations in ABCC8 and KCNJ11 Genes in Saudi Persistent Hyperinsulinemic Hypoglycemia of Infancy (PHHI) Patients
The autosomal recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is associated with mutations in either ABCC8 or KCNJ11 genes. In the present study, we describe the clinical features and results of genetic analysis of 13 Saudi Arabian patients with PHHI. Clinically, most patients presented with infantile seizures and/or developmental delay, with a subset of patients wh...
متن کاملSevere persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation.
Glucokinase (GK) is a glycolytic key enzyme that functions as a glucose sensor in the pancreatic beta-cell, where it governs glucose-stimulated insulin secretion (GSIS). Heterozygous inactivating mutations in the glucokinase gene (GCK) cause a mild form of diabetes (maturity-onset diabetes of the young [MODY]2), and activating mutations have been associated with a mild form of familial hyperins...
متن کاملA Novel Mutation in Exon 4 of the Low Density Lipoprotein (LDL) Receptor Gene in an Iranian Familial Hypercholesterolemia Patient
Familial hypercholesterolemia (FH) is an autosomal co-dominant disorder of lipid metabolism, caused by mutations in LDL receptor gene. The penetrance of FH is almost 100%, meaning that half of the offspring of affected parents born with disease. The patients are at risk of premature coronary heart disease (CHD). There is no report about the molecular basis of FH in Iran. Identification of mutat...
متن کامل