Fatigability and variable-frequency train stimulation of human skeletal muscles.

نویسندگان

  • C Scott Bickel
  • Jill M Slade
  • Gordon L Warren
  • Gary A Dudley
چکیده

BACKGROUND AND PURPOSE The quadriceps femoris (QF) and tibialis anterior (TA) muscles are often activated through the use of electrical stimulation by physical therapists. These 2 muscles are fundamentally different in regard to their fiber-type composition. Whether protocols developed using a given muscle can be applied to another muscle has seldom been questioned, even if they differ in fiber type. The purpose of this study was to test the hypothesis that torque augmentation during variable-frequency train (VFT) stimulation as compared with constant-frequency train (CFT) stimulation in the fatigued state would not differ between these muscles, even though the TA muscle has 50% relatively more slow fibers than the QF muscle relative to each muscle's overall composition. SUBJECTS Ten recreationally active men with no history of lower-extremity pathology participated in the study (mean age=25 years, SD=4, range=19-31; mean height=179 cm, SD=5, range=170-188; mean body mass=80 kg, SD=15, range=63-111). METHODS The subjects' TA and QF muscles were stimulated with CFTs (six 200-microsecond square waves separated by 70 milliseconds) or VFTs (first interpulse interval=5 milliseconds) that evoked an isometric contraction. RESULTS After potentiation, the torque-time integral and peak torque were not different for the VFT and CFT stimulation. Rise time was longer for the TA muscle than for the QF muscle and for CFT stimulation versus VFT stimulation (both approximately 40%). After 180 CFTs (50% duty cycle), peak torque decreased 56% overall, with no differences between muscles. Enhancement of the torque-time integral (25%) by VFT stimulation was not different between fatigued QF and TA muscles. Torque augmentation was due to the VFT stimulation evoking 27% greater peak torque and less slowing of rise time than the CFT stimulation (15% versus 30%). DISCUSSION AND CONCLUSION The results indicate that the QF muscle may not necessarily fatigue more than the TA muscle. The results suggest that VFTs augment the force of fatigued, human skeletal muscle irrespective of fiber type.

منابع مشابه

Strength and Endurance in Human Skeletal Muscle, Why Electrical

BackgroundElectrical stimulation has been used to train paralyzed muscle. However, papers often cite that rapid fatigability of muscle compared to voluntary effort. Methods and Procedures; The literature is reviewed over the last 25 years examining the normal recruitment order of motor units, the impact of recruitment order, stimulation frequency and asynchronous recruitment on muscle strength ...

متن کامل

Variable-frequency train stimulation of canine latissimus dorsi muscle during shortening contractions.

In cardiomyoplasty, the latissimus dorsi muscle (LDM) is wrapped around the heart ventricles and electrically activated with a constant-frequency train (CFT). This study tested the hypotheses that increased mechanical performance from the LDM could be achieved by activating the muscle with variable-frequency trains (VFTs) of shorter duration or containing fewer stimulus pulses than the CFT now ...

متن کامل

Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.

Muscles paralyzed by chronic (>1 yr) spinal cord injury fatigue readily. Our aim was to evaluate whether the fatigability of paralyzed thenar muscles (n = 10) could be reduced by the repeated delivery of variable versus constant frequency pulse trains. Fatigue was induced in four ways. Intermittent supramaximal median nerve stimulation (300-ms-duration trains) was delivered at 1) constant high ...

متن کامل

Effects of activation frequency and force on low-frequency fatigue in human skeletal muscle.

No comparison of the amount of low-frequency fatigue (LFF) produced by different activation frequencies exists, although frequencies ranging from 10 to 100 Hz have been used to induce LFF. The quadriceps femoris of 11 healthy subjects were tested in 5 separate sessions. In each session, the force-generating ability of the muscle was tested before and after fatigue and at 2, approximately 13, an...

متن کامل

Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand.

Modulation of motor unit activation rate is a fundamental process by which the mammalian nervous system encodes muscle force. To identify how rate coding of force may change as a consequence of fatigue, intraneural microstimulation of motor axons was used to elicit twitch and force-frequency responses before and after 2 min of intermittent stimulation (40-Hz train for 330 ms, 1 train/s) in sing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Physical therapy

دوره 83 4  شماره 

صفحات  -

تاریخ انتشار 2003