Proteomic Identification of S-Nitrosylated Golgi Proteins: New Insights into Endothelial Cell Regulation by eNOS-Derived NO
نویسندگان
چکیده
BACKGROUND Endothelial nitric oxide synthase (eNOS) is primarily localized on the Golgi apparatus and plasma membrane caveolae in endothelial cells. Previously, we demonstrated that protein S-nitrosylation occurs preferentially where eNOS is localized. Thus, in endothelial cells, Golgi proteins are likely to be targets for S-nitrosylation. The aim of this study was to identify S-nitrosylated Golgi proteins and attribute their S-nitrosylation to eNOS-derived nitric oxide in endothelial cells. METHODS Golgi membranes were isolated from rat livers. S-nitrosylated Golgi proteins were determined by a modified biotin-switch assay coupled with mass spectrometry that allows the identification of the S-nitrosylated cysteine residue. The biotin switch assay followed by Western blot or immunoprecipitation using an S-nitrosocysteine antibody was also employed to validate S-nitrosylated proteins in endothelial cell lysates. RESULTS Seventy-eight potential S-nitrosylated proteins and their target cysteine residues for S-nitrosylation were identified; 9 of them were Golgi-resident or Golgi/endoplasmic reticulum (ER)-associated proteins. Among these 9 proteins, S-nitrosylation of EMMPRIN and Golgi phosphoprotein 3 (GOLPH3) was verified in endothelial cells. Furthermore, S-nitrosylation of these proteins was found at the basal levels and increased in response to eNOS stimulation by the calcium ionophore A23187. Immunofluorescence microscopy and immunoprecipitation showed that EMMPRIN and GOLPH3 are co-localized with eNOS at the Golgi apparatus in endothelial cells. S-nitrosylation of EMMPRIN was notably increased in the aorta of cirrhotic rats. CONCLUSION Our data suggest that the selective S-nitrosylation of EMMPRIN and GOLPH3 at the Golgi apparatus in endothelial cells results from the physical proximity to eNOS-derived nitric oxide.
منابع مشابه
Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase
Lipid modifications mediate the subcellular localization and biological activity of many proteins, including endothelial nitric oxide synthase (eNOS). This enzyme resides on the cytoplasmic aspect of the Golgi apparatus and in caveolae and is dually acylated by both N-myristoylation and S-palmitoylation. Palmitoylation-deficient mutants of eNOS release less nitric oxide (NO). We identify enzyme...
متن کاملS-nitrosylation of endogenous protein tyrosine phosphatases in endothelial insulin signaling.
Nitric oxide (NO) exerts its biological function through S-nitrosylation of cellular proteins. Due to the labile nature of this modification under physiological condition, identification of S-nitrosylated residue in enzymes involved in signaling regulation remains technically challenging. The present study investigated whether intrinsic NO produced in endothelium-derived MS-1 cells response to ...
متن کاملProteomic Analysis of Gene Expression in Basal Cell Carcinoma
Background: Basal Cell Carcinoma (BCC) is a type of non-melanoma skin cancer. Alteration in gene expression is the important event that happens in cancer cell. Detection of this event is possible by proteomics techniques. Methods: Normal and tumor tissues were taken from BCC patient. Total proteins were purified by standard methods, and proteins were separated by two-dimensional electrophoresis...
متن کاملProteomic Identification of S-Nitrosylated Proteins in the Parasite Entamoeba histolytica by Resin-Assisted Capture: Insights into the Regulation of the Gal/GalNAc Lectin by Nitric Oxide
Entamoeba histolytica is a gastrointestinal protozoan parasite that causes amebiasis, a disease which has a worldwide distribution with substantial morbidity and mortality. Nitrosative stress, which is generated by innate immune cells, is one of the various environmental challenges that E. histolytica encounters during its life cycle. Although the effects of nitric oxide (NO) on the regulation ...
متن کاملA new role for caveolin-1: regulation of guanosine triphosphate cyclohydrolase I and tetrahydrobiopterin in endothelial cells.
Caveolae was initially described as plasmalemmal vesicles in the endothelium of the heart in the early 1950s. Since then, caveolae have been identified as the 50to 100-nm flask-shaped invaginations of the plasma membrane in a wide variety of tissues and cell types. In the past decade, a great deal of effort has been expended to determine the biological role of caveolae. Although detailed morpho...
متن کامل