Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae.

نویسندگان

  • Natalia Requena
  • Magdalene Breuninger
  • Philipp Franken
  • Aurora Ocón
چکیده

The establishment of the arbuscular mycorrhizal symbiosis results in a modification of the gene expression pattern in both plant and fungus to accomplish the morphological and physiological changes necessary for the bidirectional transfer of nutrients between symbionts. H(+)-ATPase enzymes play a key role establishing the electrochemical gradient required for the transfer of nutrients across the plasma membrane in both fungi and plants. Molecular analysis of the genetic changes in arbuscular mycorrhizal fungi during symbiosis allowed us to isolate a fungal cDNA clone encoding a H(+)-ATPase, GmPMA1, from Glomus mosseae (BEG12). Despite the high conservation of the catalytic domain from H(+)-ATPases, detailed analyses showed that GmPMA1 was strongly related only to a previously identified G. mosseae ATPase gene, GmHA5, and not to the other four ATPase genes known from this fungus. A developmentally regulated expression pattern could be shown for both genes, GmPMA1 and GmHA5. GmPMA1 was highly expressed during asymbiotic development, and its expression did not change when entering into symbiosis, whereas the GmHA5 transcript was induced upon plant recognition at the appressorium stage. Both genes maintained high levels of expression during intraradical development, but their expression was reduced in the extraradical mycelium. Phosphate, a key nutrient to the symbiosis, also induced the expression of GmHA5 during asymbiotic growth, whereas sucrose had a negative effect. Our results indicate that different fungal H(+)-ATPases isoforms might be recruited at different developmental stages possibly responding to the different requirements of the life in symbiosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants.

Regulation by arbuscular mycorrhizal symbiosis of three tomato plasma membrane H+-ATPase genes (LHA1, LHA2 and LHA4) has been analysed in wild-type and mycorrhiza-defective tomato plants. Expression of these genes was differentially regulated in leaves and roots of both tomato phenotypes after inoculation with Glomus mosseae.

متن کامل

Heavy metal regulation of plasma membrane H+-ATPase gene expression in halophyte Aeluropus littoralis

The present study was conducted to find the effect of three heavy metals, Ag, Hg and Pb on the expression level of a gene encoding plasma membrane H+-ATPase in Aeluropus littoralis. The experiment was laid out in a completely random design with three replications. The expression of the main gene was normalized to the expression of the housekeeping gene actin. Two 259 and 187 bp fragments were a...

متن کامل

Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis

We have recently identified two genes coding for ammonium transporters (AMT) in Sorghum bicolor that were induced in roots colonized by arbuscular mycorrhizal (AM) fungi. To improve our understanding of the dynamics of ammonium transport in this symbiosis, we studied the transfer of soil-ammonium-derived (15)N to S. bicolor plants via the Glomus mosseae fungal mycelium in compartmented microcos...

متن کامل

GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices.

In the symbiotic association of plants and arbuscular mycorrhizal (AM) fungi, the fungus delivers mineral nutrients, such as phosphate and nitrogen, to the plant while receiving carbon. Previously, we identified an NH(4)(+) transporter in the AM fungus Glomus intraradices (GintAMT1) involved in NH(4)(+) uptake from the soil when preset at low concentrations. Here, we report the isolation and ch...

متن کامل

Influence of Glomus mosseae mycorrhizal fungus on growth, Phenolic compounds and antioxidant enzymes activity of Pistachio(Pistacia vera) under Copper stress

One of the most suitable methods for reducing the effects of copper (Cu) stress is the use of mycorrhizal fungus. This research was conducted to study the effect of Glomus mosseae mycorrhizal fungus on growth and some physiological parameters of pistachio (Pistacia vera) in response to increasing soil Cu concentration. The experiment was carried out as factorial in a completely randomized desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 132 3  شماره 

صفحات  -

تاریخ انتشار 2003