Deobfuscating sparse graphs
نویسندگان
چکیده
We construct a fixed parameter algorithm parameterized by d and k that takes as an input a graph G′ obtained from a d-degenerate graph G by complementing on at most k arbitrary subsets of the vertex set of G and outputs a graph H such that G and H agree on all but f(d, k) vertices. Our work is motivated by the first order model checking in graph classes that are first order interpretable in classes of sparse graphs. We derive as a corollary that if G is a graph class with bounded expansion, then the first order model checking is fixed parameter tractable in the class of all graphs that can obtained from a graph G ∈ G by complementing on at most k arbitrary subsets of the vertex set of G; this implies an earlier result that the first order model checking is fixed parameter tractable in graph classes interpretable in classes of graphs with bounded maximum degree.
منابع مشابه
On $(P_5,\bar{P_5})$-sparse graphs and other families
We extend the notion of $P_4$-sparse graphs previously introduced by {\scshape Ho\`ang} by considering $\mathcal{F}$-sparse graphs were $\mathcal{F}$ denotes a finite set of graphs on $p$ vertices. Thus we obtain some results on $(P_5,\bar{P_5})$-sparse graphs already known on $(P_5,\bar{P_5})$-free graphs. Finally we completely describe the structure of $(P_5,\bar{P_5}, bull$)-sparse graphs, i...
متن کاملOn variations of P4-sparse graphs
Hoàng defined the P4-sparse graphs as the graphs where every set of five vertices induces at most one P4. These graphs attracted considerable attention in connection with the P4-structure of graphs and the fact that P4-sparse graphs have bounded clique-width. Fouquet and Giakoumakis generalized this class to the nicely structured semi-P4-sparse graphs being the (P5, co-P5, co-chair)-free graphs...
متن کاملExtremal results in sparse pseudorandom graphs
Szemerédi’s regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and Rödl proved an analogue of Szemerédi’s regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemerédi’s regularity lemma us...
متن کاملFast C-K-R Partitions of Sparse Graphs
We present fast algorithms for constructing probabilistic embeddings and approximate distance oracles in sparse graphs. The main ingredient is a fast algorithm for sampling the probabilistic partitions of Calinescu, Karloff, and Rabani in sparse graphs.
متن کاملThe Regularity Lemma of Szemerédi for Sparse Graphs
In this note we present a new version of the well-known lemma of Szemerédi [17] concerning regular partitions of graphs. Our result deals with subgraphs of pseudo-random graphs, and hence may be used to partition sparse graphs that do no contain dense subgraphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.09985 شماره
صفحات -
تاریخ انتشار 2017