Compliant Leg Architectures and a Linear Control Strategy for the Stable Running of Planar Biped Robots
نویسندگان
چکیده
This paper investigates two fundamental structures for biped robots and a control strategy to achieve stable biped running. The first biped structure contains straight legs with telescopic springs, and the second one contains knees with compliant elements in parallel with the motors. With both configurations we can use a standard linear discrete-time state-feedback control strategy to achieve an active periodic stable biped running gait, using the Poincare map of one complete step to produce the discrete-time model. In this case, the Poincare map describes an open-loop system with an unstable equilibrium, requiring a closedloop control for stabilization. The discretization contains a stance phase, a flight phase and a touch-down. In the first approach, the control signals remain constant during each phase, while in the second approach both phases are discretized into a number of constant-torque intervals, so that its formulation can be applied easily to stabilize any active biped running gait. Simulation results with both the straight-legged and the kneed biped model demonstrate stable gaits on both horizontal and inclined surfaces.
منابع مشابه
Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملEmbedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL
A mathematical formalism for designing running gaits in bipedal robots with compliance is introduced and subsequently validated experimentally on MABEL, a planar biped that contains springs in its drivetrain. The methods of virtual constraints and hybrid zero dynamics are used to design a time-invariant feedback controller that respects the natural compliance of the open-loop system. In additio...
متن کاملImpedance control and modulation for stable footing in locomotion of biped robots
This paper proposes an impedance control method with impedance modulation strategy for biped robot locomotion. Both the constrained leg and the free leg are controlled by impedance control. The impedance parameters changes depending on the gait phase of the biped robot. To reduce the magnitude of an impact and guarantee a stable footing when a foot contacts with the ground, the damping coeffici...
متن کاملRobust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کاملCompliant Actuation for Biologically Inspired Bipedal Walking Robots
This thesis deals with compliant actuators and their use in energy efficient walking bipeds. Two types of actuators with adaptable compliance are discussed: PPAM (Pleated Pneumatic Artificial Muscles) and MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The PPAM is a design made to overcome shortcomings associated with the existing types of pneumatic ...
متن کامل