Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae).

نویسندگان

  • C G Willis
  • J C Hall
  • R Rubio de Casas
  • T Y Wang
  • K Donohue
چکیده

BACKGROUND AND AIMS Dispersal and establishment ability can influence evolutionary processes such as geographic isolation, adaptive divergence and extinction probability. Through these population-level dynamics, dispersal ability may also influence macro-evolutionary processes such as species distributions and diversification. This study examined patterns of evolution of dispersal-related fruit traits, and how the evolution of these traits is correlated with shifts in geographic range size, habitat and diversification rates in the tribe Brassiceae (Brassicaceae). METHODS The phylogenetic analysis included 72 taxa sampled from across the Brassiceae and included both nuclear and chloroplast markers. Dispersal-related fruit characters were scored and climate information for each taxon was retrieved from a database. Correlations between fruit traits, seed characters, habitat, range and climate were determined, together with trait-dependent diversification rates. KEY RESULTS It was found that the evolution of traits associated with limited dispersal evolved only in association with compensatory traits that increase dispersal ability. The evolution of increased dispersal ability occurred in multiple ways through the correlated evolution of different combinations of fruit traits. The evolution of traits that increase dispersal ability was in turn associated with larger seed size, increased geographic range size and higher diversification rates. CONCLUSIONS This study provides evidence that the evolution of increased dispersal ability and larger seed size, which may increase establishment ability, can also influence macro-evolutionary processes, possibly by increasing the propensity for long-distance dispersal. In particular, it may increase speciation and consequent diversification rates by increasing the likelihood of geographic and thereby reproductive isolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae).

PREMISE OF STUDY Many angiosperms have fruit morphologies that result in seeds from the same plant having different dispersal capabilities. A prime example is found in the Brassiceae (Brassicaceae), which has many members with segmented or heteroarthrocarpic fruits. Since only 40% of the genera are heteroarthrocarpic, this tribe provides an opportunity to study the evolution of an ecologically ...

متن کامل

Phylogenetic Relationships of Brassicaceae Species Based on Matk Sequences

The chloroplast gene matK, located in the intron of chloroplast trnK, encodes maturase, and variations of matK provide substantial resolution for phylogenetic analyses at intergeneric levels. Sequence data from 127 species (including subspecies and varieties) of Brassicaceae and one outgroup specie (Cleome gynandra) were used to construct the phylogeny of this family and elucidate the phylogene...

متن کامل

Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.

The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progeni...

متن کامل

Chromosome triplication found across the tribe Brassiceae.

We have used an approximately 8.7-Mb BAC contig of Arabidopsis thaliana Chromosome 4 to trace homeologous chromosome regions in 21 species of the family Brassicaceae. Homeologs of this segment could be identified in all tested species. Painting of pachytene chromosomes of Calepina, Conringia, and Sisymbrium species (2n = 14, 16), traditionally placed in tribe Brassiceae, showed one homeologous ...

متن کامل

Evolution of SINE S1 retroposons in Cruciferae plant species.

The S1 element is a plant short interspersed element (SINE) that was first described and studied in Brassica napus. In this work, we investigated the distribution and the molecular phylogeny of the S1 element within the Cruciferae (= Brassicaceae). S1 elements were found to be widely distributed within the Cruciferae, especially in species of the tribe Brassiceae. The molecular phylogeny of S1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 114 8  شماره 

صفحات  -

تاریخ انتشار 2014