Extend Transferable Belief Models with Probabilistic Priors

نویسندگان

  • Chunlai Zhou
  • Yuan Feng
چکیده

In this paper, we extend Smets’ transferable belief model (TBM) with probabilistic priors. Our first motivation for the extension is about evidential reasoning when the underlying prior knowledge base is Bayesian. We extend standard Dempster models with prior probabilities to represent beliefs and distinguish between two types of induced mass functions on an extended Dempster model: one for believing and the other essentially for decision-making. There is a natural correspondence between these two mass functions. In the extended model, we propose two conditioning rules for evidential reasoning with probabilistic knowledge base. Our second motivation is about the partial dissociation of betting at the pignistic level from believing at the credal level in TBM. In our extended TBM, we coordinate these two levels by employing the extended Dempster model to represent beliefs at the credal level. Pignistic probabilities are derived not from the induced mass function for believing but from the one for decision-making in the model and hence need not rely on the choice of frame of discernment. Moreover, we show that the above two proposed conditionings and marginalization (or coarsening) are consistent with pignistic transformation in the extended TBM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DELUDEDLY AGREEING TO AGREE By

We study conditions relating to the impossibility of agreeing to disagree in models of interactive KD45 belief (in contrast to models of S5 knowledge, which are used in nearly all the agreements literature). Agreement and disagreement are studied under models of belief in three broad settings: non-probabilistic decision models, probabilistic belief revision of priors, and dynamic communication ...

متن کامل

Uncommon Priors Require Origin Disputes

In standard belief models, priors are always common knowledge. This prevents such models from representing agents’ probabilistic beliefs about the origins of their priors. By embedding standard models in a larger standard model, however, pre-priors can describe such beliefs. When an agent’s prior and pre-prior are mutually consistent, he must believe that his prior would only have been differen...

متن کامل

Non-Standard Probabilistic and Non Probabilistic Representations of Uncertainty

Survey of the mathematical models proposed to represent quantified beliefs, and their comparison. The models considered are separated into non standard probability and non probability models, according to the fact they are based on probability theory or not. The first group concerns the upper and lower probability models, the second the possibility theory and the transferable belief model.

متن کامل

belief function and the transferable belief model

Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015