v 2 2 F eb 2 00 7 Nonholonomic Ricci Flows and Running Cosmological Constant : I . 4 D Taub – NUT Metrics

نویسندگان

  • Sergiu I. Vacaru
  • Mihai Visinescu
چکیده

In this work we construct and analyze exact solutions describing Ricci flows and nonholonomic deformations of four dimensional (4D) Taub-NUT spacetimes. It is outlined a new geometric techniques of constructing Ricci flow solutions. Some conceptual issues on spacetimes provided with generic off–diagonal metrics and associated nonlinear connection structures are analyzed. The limit from gravity/Ricci flow models with nontrivial torsion to configurations with the Levi-Civita connection is allowed in some specific physical circumstances by constraining the class of integral varieties for the Einstein and Ricci flow equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

qc / 0 60 90 86 v 2 1 1 O ct 2 00 7 Nonholonomic Ricci Flows and Running Cosmological Constant : 3 D Taub – NUT Metrics

The common assertion that the Ricci flows of Einstein spaces with cosmological constant can be modelled by certain classes of nonholonomic frame, metric and linear connection deformations resulting in nonhomogeneous Einstein spaces is examined in the light of the role played by topological three dimensional (3D) Taub–NUT–AdS/dS spacetimes.

متن کامل

2 0 Se p 20 06 Nonholonomic Ricci Flows and Running Cosmological Constant : II . 3 D Taub – NUT Metrics

The common assertion that the Ricci flows of Einstein spaces with cosmological constant can be modelled by certain classes of nonholonomic frame, metric and linear connection deformations resulting in nonhomogeneous Einstein spaces is examined in the light of the role played by topological three dimensional (3D) Taub–NUT–AdS/dS spacetimes.

متن کامل

0 Se p 20 06 Nonholonomic Ricci Flows and Running Cosmological Constant : I . 4 D Taub – NUT Metrics

In this work we construct and analyze exact solutions describing Ricci flows and nonholonomic deformations of four dimensional (4D) Taub-NUT spacetimes. It is outlined a new geometric techniques of constructing Ricci flow solutions. Some conceptual issues on spacetimes provided with generic off–diagonal metrics and associated nonlinear connection structures are analyzed. The limit from gravity/...

متن کامل

Fe b 20 07 Nonholonomic Ricci Flows and Running Cosmological Constant : I . 4 D Taub – NUT Metrics

In this work we construct and analyze exact solutions describing Ricci flows and nonholonomic deformations of four dimensional (4D) Taub-NUT spacetimes. It is outlined a new geometric techniques of constructing Ricci flow solutions. Some conceptual issues on spacetimes provided with generic off–diagonal metrics and associated nonlinear connection structures are analyzed. The limit from gravity/...

متن کامل

Exact Solutions in Gravity, and Symmetric and Nonsymmetric Metrics

We provide a proof that nonholonomically constrained Ricci flows of (pseudo) Riemannian metrics positively result into nonsymmetric metrics (as explicit examples, we consider flows of some physically valuable exact solutions in general relativity). There are constructed and analyzed three classes of solutions of Ricci flow evolution equations defining nonholonomic deformations of Taub NUT, Schw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008